BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 17604970)

  • 1. Determination of critical micellar concentrations of cholic acid and its keto derivatives.
    Posa M; Kevresan S; Mikov M; Cirin-Novta V; Sârbu C; Kuhajda K
    Colloids Surf B Biointerfaces; 2007 Oct; 59(2):179-83. PubMed ID: 17604970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triketocholanoic (dehydrocholic) acid. Hepatic metabolism and effect on bile flow and biliary lipid secretion in man.
    Soloway RD; Hofmann AF; Thomas PJ; Schoenfield LJ; Klein PD
    J Clin Invest; 1973 Mar; 52(3):715-24. PubMed ID: 4685091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of human hepatic cytochrome p450 enzymes involved in the biotransformation of cholic and chenodeoxycholic acid.
    Deo AK; Bandiera SM
    Drug Metab Dispos; 2008 Oct; 36(10):1983-91. PubMed ID: 18583509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen-bonded aggregations of oxo-cholic acids.
    Bertolasi V; Ferretti V; Pretto L; Fantin G; Fogagnolo M; Bortolini O
    Acta Crystallogr B; 2005 Jun; 61(Pt 3):346-56. PubMed ID: 15914900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of NaCl on hydrophobicity of selected, pharmacologically active bile acids expressed with chromatographic retention index and critical micellar concentration.
    Posa M; Pilipović A; Lalić M
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):336-43. PubMed ID: 20702073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical micellar concentrations of keto derivatives of selected bile acids: thermodynamic functions of micelle formation.
    Posa M; Kevresan S; Mikov M; Cirin-Novta V; Kuhajda K
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):151-61. PubMed ID: 18328679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bile alcohol metabolism in man. Conversion of 5beta-cholestane-3alpha, 7alpha,12alpha, 25-tetrol to cholic acid.
    Salen G; Shefer S; Setoguchi T; Mosbach EH
    J Clin Invest; 1975 Jul; 56(1):226-31. PubMed ID: 1141434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bile acid synthesis in cultured human hepatocytes: support for an alternative biosynthetic pathway to cholic acid.
    Axelson M; Ellis E; Mörk B; Garmark K; Abrahamsson A; Björkhem I; Ericzon BG; Einarsson C
    Hepatology; 2000 Jun; 31(6):1305-12. PubMed ID: 10827156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of a new gemini surfactant derived from 3alpha,12alpha-dihydroxy-5beta-cholan-24-amine (steroid residue) and ethylenediamintetraacetic acid (spacer).
    Alvarez Alcalde M; Jover A; Meijide F; Galantini L; Pavel NV; Antelo A; Vázquez Tato J
    Langmuir; 2008 Jun; 24(12):6060-6. PubMed ID: 18498184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of cholic acid to methyl 3alpha-carbethoxy-12alpha-acetoxy-6-oxo-5beta-chol-7-en-24-oate.
    Masterson SP; Miller TA; Nassim BE
    Steroids; 2003 Mar; 68(3):253-6. PubMed ID: 12628688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anodic electrochemical oxidation of cholic acid.
    Medici A; Pedrini P; De Battisti A; Fantin G; Fogagnolo M; Guerrini A
    Steroids; 2001 Feb; 66(2):63-9. PubMed ID: 11146084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 25-hydroxylation pathway of cholic acid biosynthesis in man and rat.
    Shefer S; Cheng FW; Dayal B; Hauser S; Tint GS; Salen G; Mosbach EH
    J Clin Invest; 1976 Apr; 57(4):897-903. PubMed ID: 181403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isocholic acid formation from 7 alpha,12 alpha-dihydroxy-3-keto-5 beta-cholanoic acid with human liver enzyme.
    Amuro Y; Yamade W; Yamamoto T; Kudo K; Fujikura M; Maebo A; Hada T; Higashino K
    Biochim Biophys Acta; 1986 Dec; 879(3):362-8. PubMed ID: 3778926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of cholyl-adenylate in rat liver microsomes by liquid chromatography/electrospray ionization-mass spectrometry.
    Ikegawa S; Ishikawa H; Oiwa H; Nagata M; Goto J; Kozaki T; Gotowda M; Asakawa N
    Anal Biochem; 1999 Jan; 266(1):125-32. PubMed ID: 9887221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophobicity and haemolytic potential of oxo derivatives of cholic, deoxycholic and chenodeoxycholic acids.
    Posa M; Kuhajda K
    Steroids; 2010 Jun; 75(6):424-31. PubMed ID: 20171237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of critical micellar concentrations of two monoketo derivatives of cholic acid.
    Posa M; Guzsvány V; Csanádi J
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):84-90. PubMed ID: 19632817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Successful prediction of the hydrogen bond network of the 3-oxo-12alpha-hydroxy-5beta-cholan-24-oic acid crystal from resolution of the crystal structure of deoxycholic acid and its three 3,12-dihydroxy epimers.
    Jover A; Meijide F; Soto VH; Vázquez Tato J; Núñez ER; Ton-Nu HT; Hofmann AF
    Steroids; 2004 Jun; 69(6):379-88. PubMed ID: 15219787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QSPR study of the effect of steroidal hydroxy and oxo substituents on the critical micellar concentration of bile acids.
    Poša M
    Steroids; 2011 Jan; 76(1-2):85-93. PubMed ID: 20869377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bile acids and their oxo derivatives: Potential inhibitors of carbonic anhydrase I and II, androgen receptor antagonists and CYP3A4 substrates.
    Trifunović J; Borčić V; Mikov M
    Biomed Chromatogr; 2017 May; 31(5):. PubMed ID: 27743401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrost-6-en-5-oic acid and β-oxidation products of the C-17 side chain in cholic acid degradation by Comamonas testosteroni TA441.
    Horinouchi M; Hayashi T; Koshino H; Malon M; Hirota H; Kudo T
    J Steroid Biochem Mol Biol; 2014 Sep; 143():306-22. PubMed ID: 24810629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.