BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 17605058)

  • 1. Role of Serratia marcescens ACE2 on diesel degradation and its influence on corrosion.
    Rajasekar A; Babu TG; Pandian ST; Maruthamuthu S; Palaniswamy N; Rajendran A
    J Ind Microbiol Biotechnol; 2007 Sep; 34(9):589-98. PubMed ID: 17605058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water-soluble inhibitor on microbiologically influenced corrosion in diesel pipeline.
    Muthukumar N; Maruthamuthu S; Palaniswamy N
    Colloids Surf B Biointerfaces; 2006 Dec; 53(2):260-70. PubMed ID: 17110090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of an oil soluble inhibitor on microbiologically influenced corrosion in a diesel transporting pipeline.
    Muthukumar N; Maruthamuthu S; Mohanan S; Palaniswamy N
    Biofouling; 2007; 23(5-6):395-404. PubMed ID: 17882627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation of corrosion inhibitors and their influence on petroleum product pipeline.
    Rajasekar A; Maruthamuthu S; Palaniswamy N; Rajendran A
    Microbiol Res; 2007; 162(4):355-68. PubMed ID: 16580829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines.
    Rajasekar A; Anandkumar B; Maruthamuthu S; Ting YP; Rahman PK
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):1175-88. PubMed ID: 19844704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial degradation and corrosion of naphtha in transporting pipeline.
    Rajasekar A; Ponmariappan S; Maruthamuthu S; Palaniswamy N
    Curr Microbiol; 2007 Nov; 55(5):374-81. PubMed ID: 17680305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of novel strains of Pseudomonas aeruginosa and Serratia marcescens possessing high efficiency to degrade gasoline, kerosene, diesel oil, and lubricating oil.
    Wongsa P; Tanaka M; Ueno A; Hasanuzzaman M; Yumoto I; Okuyama H
    Curr Microbiol; 2004 Dec; 49(6):415-22. PubMed ID: 15696617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of dibenzofuran-degrading Serratia marcescens from alkalophilic bacterial consortium of the chemostat.
    Jaiswal PK; Thakur IS
    Curr Microbiol; 2007 Nov; 55(5):447-54. PubMed ID: 17710482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of nicosulfuron by the bacterium Serratia marcescens N80.
    Zhang H; Mu W; Hou Z; Wu X; Zhao W; Zhang X; Pan H; Zhang S
    J Environ Sci Health B; 2012; 47(3):153-60. PubMed ID: 22375586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) by using Serratia marcescens NCIM 2919.
    Grewal J; Bhattacharya A; Kumar S; Singh DK; Khare SK
    J Environ Sci Health B; 2016 Dec; 51(12):809-816. PubMed ID: 27494385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spore-forming Serratia marcescens subsp. sakuensis subsp. nov., isolated from a domestic wastewater treatment tank.
    Ajithkumar B; Ajithkumar VP; Iriye R; Doi Y; Sakai T
    Int J Syst Evol Microbiol; 2003 Jan; 53(Pt 1):253-258. PubMed ID: 12656181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous removal of hexavalent chromium and o-dichlorobenzene by isolated Serratia marcescens ZD-9.
    Xu W; Duan G; Liu Y; Zeng G; Li X; Liang J; Zhang W
    Biodegradation; 2018 Dec; 29(6):605-616. PubMed ID: 30267223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The corrosion process caused by the activity of the anaerobic sporulated bacterium Clostridium celerecrescens on API XL 52 steel.
    Ramos Monroy OA; Ruiz Ordaz N; Hernández Gayosso MJ; Juárez Ramírez C; Galíndez Mayer J
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):29991-30002. PubMed ID: 31414386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation of diazinon by Serratia marcescens DI101 and its use in bioremediation of contaminated environment.
    Abo-Amer A
    J Microbiol Biotechnol; 2011 Jan; 21(1):71-80. PubMed ID: 21301195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-biofilm potential of a glycolipid surfactant produced by a tropical marine strain of Serratia marcescens.
    Dusane DH; Pawar VS; Nancharaiah YV; Venugopalan VP; Kumar AR; Zinjarde SS
    Biofouling; 2011; 27(6):645-54. PubMed ID: 21707248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Serratia marcescens on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms.
    Kur J; Burkiewicz A; Samet A; Sienkiewicz I
    Acta Microbiol Pol; 1995; 44(3-4):219-25. PubMed ID: 8934664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of the biosurfactant serrawettin W1 by Serratia marcescens S-1 improves hydrocarbon degradation.
    Zhang K; Tao W; Lin J; Wang W; Li S
    Bioprocess Biosyst Eng; 2021 Dec; 44(12):2541-2552. PubMed ID: 34514513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel endophytes of rice form a taxonomically distinct subgroup of Serratia marcescens.
    Tan Z; Hurek T; Gyaneshwar P; Ladha JK; Reinhold-Hurek B
    Syst Appl Microbiol; 2001 Jul; 24(2):245-51. PubMed ID: 11518328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and degradation characterization of hexachlorobutadiene degrading strain Serratia marcescens HL1.
    Li MT; Hao LL; Sheng LX; Xu JB
    Bioresour Technol; 2008 Oct; 99(15):6878-84. PubMed ID: 18337093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions.
    Mnif S; Chamkha M; Sayadi S
    J Appl Microbiol; 2009 Sep; 107(3):785-94. PubMed ID: 19320948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.