BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 17605393)

  • 1. Whole blood clot dissolution: in vitro study on the effects of permeation pressure.
    Jeong WW; Jang AS; Rhee K
    Proc Inst Mech Eng H; 2007 May; 221(4):357-63. PubMed ID: 17605393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The t-PA-encapsulated PLGA nanoparticles shelled with CS or CS-GRGD alter both permeation through and dissolving patterns of blood clots compared with t-PA solution: an in vitro thrombolysis study.
    Wang SS; Chou NK; Chung TW
    J Biomed Mater Res A; 2009 Dec; 91(3):753-61. PubMed ID: 19051299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clot penetration and fibrin binding of amediplase,a chimeric plasminogen activator (K2 tu-PA).
    Rijken DC; Barrett-Bergshoeff MM; Jie AF; Criscuoli M; Sakharov DV
    Thromb Haemost; 2004 Jan; 91(1):52-60. PubMed ID: 14691568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turbulent axially directed flow of plasma containing rt-PA promotes thrombolysis of non-occlusive whole blood clots in vitro.
    Tratar G; Blinc A; Strukelj M; Mikac U; Sersa I
    Thromb Haemost; 2004 Mar; 91(3):487-96. PubMed ID: 14983224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct microscopic monitoring of initial and dynamic clot lysis using plasmin or rt-PA in an in vitro flow system.
    Bizjak N; Bajd F; Vidmar J; Blinc A; Perme MP; Marder VJ; Novokhatny V; Serša I
    Thromb Res; 2014 May; 133(5):908-13. PubMed ID: 24613694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibrin-targeted perfluorocarbon nanoparticles for targeted thrombolysis.
    Marsh JN; Senpan A; Hu G; Scott MJ; Gaffney PJ; Wickline SA; Lanza GM
    Nanomedicine (Lond); 2007 Aug; 2(4):533-43. PubMed ID: 17716136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro examination of the pressure effect on clot dissolution with thrombolytic patch.
    Zhen Qin ; Chi Hang Chon ; Kwok JC; Lam DC
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():549-552. PubMed ID: 28268390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-sensitive liposome-mediated delivery of thrombolytic agents.
    Saxena V; Gacchina Johnson C; Negussie AH; Sharma KV; Dreher MR; Wood BJ
    Int J Hyperthermia; 2015 Feb; 31(1):67-73. PubMed ID: 25766387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport phenomena and clot dissolving therapy: an experimental investigation of diffusion-controlled and permeation-enhanced fibrinolysis.
    Wu JH; Siddiqui K; Diamond SL
    Thromb Haemost; 1994 Jul; 72(1):105-12. PubMed ID: 7974357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel and emerging therapies: thrombus-targeted fibrinolysis.
    Lippi G; Mattiuzzi C; Favaloro EJ
    Semin Thromb Hemost; 2013 Feb; 39(1):48-58. PubMed ID: 23034825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inner clot diffusion and permeation during fibrinolysis.
    Diamond SL; Anand S
    Biophys J; 1993 Dec; 65(6):2622-43. PubMed ID: 8312497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of local thrombolytic efficacy of plasmin and rt-PA in an in-vitro flow system; a pilot study.
    Bizjak N; Bajd F; Vidmar J; Blinc A; Marder VJ; Novokhatny V; Serša I
    Blood Coagul Fibrinolysis; 2013 Oct; 24(7):711-4. PubMed ID: 23751605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of transport parameters and enzyme kinetics of the fibrinolytic system on thrombolysis: mathematical modelling of two idealised cases.
    Zidansek A; Blinc A
    Thromb Haemost; 1991 May; 65(5):553-9. PubMed ID: 1831302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An activated-platelet-sensitive nanocarrier enables targeted delivery of tissue plasminogen activator for effective thrombolytic therapy.
    Huang Y; Yu L; Ren J; Gu B; Longstaff C; Hughes AD; Thom SA; Xu XY; Chen R
    J Control Release; 2019 Apr; 300():1-12. PubMed ID: 30807804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depletion of plasminogen in vitro or during thrombolytic therapy limits fibrinolytic potential.
    Onundarson PT; Francis CW; Marder VJ
    J Lab Clin Med; 1992 Jul; 120(1):120-8. PubMed ID: 1613318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sonothrombolysis is effective with recombinant tissue-type plasminogen activator, but not with Abciximab. Results from an in vitro study with whole blood clots and platelet-rich clots.
    Eggers J; Ossadnik S; Hütten H; Seidel G
    Thromb Haemost; 2009 Dec; 102(6):1274-7. PubMed ID: 19967161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke.
    Higashida RT; Furlan AJ; Roberts H; Tomsick T; Connors B; Barr J; Dillon W; Warach S; Broderick J; Tilley B; Sacks D; ;
    Stroke; 2003 Aug; 34(8):e109-37. PubMed ID: 12869717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro clot lysis as a potential indicator of thrombus resistance to fibrinolysis--study in healthy subjects and correlation with blood fibrinolytic parameters.
    Colucci M; Scopece S; Gelato AV; Dimonte D; Semeraro N
    Thromb Haemost; 1997 Apr; 77(4):725-9. PubMed ID: 9134650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerating thrombolysis with chitosan-coated plasminogen activators encapsulated in poly-(lactide-co-glycolide) (PLGA) nanoparticles.
    Chung TW; Wang SS; Tsai WJ
    Biomaterials; 2008 Jan; 29(2):228-37. PubMed ID: 17953984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of diagnostic ultrasound-mediated microbubble contrast and urokinase on augmentation thrombolysis and optimization of the major parameters: an in vitro study].
    Yu QM; Wang H; Meng WT; Li YQ; Yang JR; Li J; Zhou X; Niu T
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2012 May; 43(3):451-7. PubMed ID: 22812257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.