These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 17605397)
1. Evaluation of the critical stroke of an earthworm-like robot for capsule endoscopes. Kwon J; Park S; Park J; Kim B Proc Inst Mech Eng H; 2007 May; 221(4):397-405. PubMed ID: 17605397 [TBL] [Abstract][Full Text] [Related]
2. The proposal of the locomotive system for capsule endoscopes. Watada M; Ozawa K Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2493-6. PubMed ID: 19163209 [TBL] [Abstract][Full Text] [Related]
3. Capsular locomotive microrobot for gastrointestinal tract. Park S; Park H; Park S; Jee C; Kim J; Kim B Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2211-4. PubMed ID: 17945700 [TBL] [Abstract][Full Text] [Related]
4. Interaction model between capsule robot and intestine based on nonlinear viscoelasticity. Zhang C; Liu H; Tan R; Li H Proc Inst Mech Eng H; 2014 Mar; 228(3):287-96. PubMed ID: 24525198 [TBL] [Abstract][Full Text] [Related]
5. Development of a biologically inspired locomotion system for a capsule endoscope. Hosokawa D; Ishikawa T; Morikawa H; Imai Y; Yamaguchi T Int J Med Robot; 2009 Dec; 5(4):471-8. PubMed ID: 19760682 [TBL] [Abstract][Full Text] [Related]
6. An experimental study of resistant properties of the small intestine for an active capsule endoscope. Wang X; Meng MQ Proc Inst Mech Eng H; 2010; 224(1):107-18. PubMed ID: 20225462 [TBL] [Abstract][Full Text] [Related]
7. Design and implementation of magnetically maneuverable capsule endoscope system with direction reference for image navigation. Sun ZJ; Ye B; Sun Y; Zhang HH; Liu S Proc Inst Mech Eng H; 2014 Jul; 228(7):652-64. PubMed ID: 25052694 [TBL] [Abstract][Full Text] [Related]
8. Shape memory alloy-based biopsy device for active locomotive intestinal capsule endoscope. Le VH; Hernando LR; Lee C; Choi H; Jin Z; Nguyen KT; Go G; Ko SY; Park JO; Park S Proc Inst Mech Eng H; 2015 Mar; 229(3):255-63. PubMed ID: 25834001 [TBL] [Abstract][Full Text] [Related]
9. Modeling and experimental characterization of propulsion of a spiral-type microrobot for medical use in gastrointestinal tract. Zhou H; Alici G; Than TD; Li W IEEE Trans Biomed Eng; 2013 Jun; 60(6):1751-9. PubMed ID: 23193447 [TBL] [Abstract][Full Text] [Related]
10. Analytical model development for the prediction of the frictional resistance of a capsule endoscope inside an intestine. Kim JS; Sung IH; Kim YT; Kim DE; Jang YH Proc Inst Mech Eng H; 2007 Nov; 221(8):837-45. PubMed ID: 18161244 [TBL] [Abstract][Full Text] [Related]
11. Experimental investigation into biomechanical and biotribological properties of a real intestine and their significance for design of a spiral-type robotic capsule. Zhou H; Alici G; Than TD; Li W Proc Inst Mech Eng H; 2014 Mar; 228(3):280-6. PubMed ID: 24519417 [TBL] [Abstract][Full Text] [Related]
12. A micro creeping robot for colonoscopy based on the earthworm. Zuo J; Yan G; Gao Z J Med Eng Technol; 2005; 29(1):1-7. PubMed ID: 15764374 [TBL] [Abstract][Full Text] [Related]
13. A semi-active milling procedure in view of preparing implantation beds in robot-assisted orthopaedic surgery. Van Ham G; Denis K; Vander Sloten J; Van Audekercke R; Van der Perre G; De Schutter J; Simon JP; Fabry G Proc Inst Mech Eng H; 2005 May; 219(3):163-74. PubMed ID: 15934392 [TBL] [Abstract][Full Text] [Related]
14. Experimental research on anchoring force in intestine for the motion of capsule robot. Chen W; Ke Q; He S; Luo W; Ji XC; Yan G J Med Eng Technol; 2013 Jul; 37(5):334-41. PubMed ID: 23795696 [TBL] [Abstract][Full Text] [Related]
15. Design of wormlike automated robotic endoscope: dynamic interaction between endoscopic balloon and surrounding tissues. Poon CCY; Leung B; Chan CKW; Lau JYW; Chiu PWY Surg Endosc; 2016 Feb; 30(2):772-778. PubMed ID: 26017907 [TBL] [Abstract][Full Text] [Related]
16. A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives. Glass P; Cheung E; Sitti M IEEE Trans Biomed Eng; 2008 Dec; 55(12):2759-67. PubMed ID: 19126455 [TBL] [Abstract][Full Text] [Related]
17. Optimization of a spherical mechanism for a minimally invasive surgical robot: theoretical and experimental approaches. Lum MJ; Rosen J; Sinanan MN; Hannaford B IEEE Trans Biomed Eng; 2006 Jul; 53(7):1440-5. PubMed ID: 16830951 [TBL] [Abstract][Full Text] [Related]
18. Development of a micro-robot for endoscopes based on wireless power transfer. Ye D; Yan G; Wang K; Ma G Minim Invasive Ther Allied Technol; 2008; 17(3):181-9. PubMed ID: 18666016 [TBL] [Abstract][Full Text] [Related]
19. Patient specific surgical simulator for the evaluation of the movability of bimanual robotic arms. Moglia A; Turini G; Ferrari V; Ferrari M; Mosca F Stud Health Technol Inform; 2011; 163():379-85. PubMed ID: 21335823 [TBL] [Abstract][Full Text] [Related]
20. An improved surgical instrument without coupled motions that can be used in robotic-assisted minimally invasive surgery. Mei F; Yili F; Bo P; Xudong Z Proc Inst Mech Eng H; 2012 Aug; 226(8):623-30. PubMed ID: 23057235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]