These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 1760653)

  • 1. Neurochemical mechanisms of recovery from peripheral vestibular lesions (vestibular compensation).
    Smith PF; Darlington CL
    Brain Res Brain Res Rev; 1991; 16(2):117-33. PubMed ID: 1760653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanisms of brainstem plasticity. The vestibular compensation model.
    Darlington CL; Flohr H; Smith PF
    Mol Neurobiol; 1991; 5(2-4):355-68. PubMed ID: 1668392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Vestibular compensation. Review of the literature and clinical applications].
    de Waele C; Vidal PP; Tran Ba Huy P; Freyss G
    Ann Otolaryngol Chir Cervicofac; 1990; 107(5):285-98. PubMed ID: 2221721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of recovery following unilateral labyrinthectomy: a review.
    Smith PF; Curthoys IS
    Brain Res Brain Res Rev; 1989; 14(2):155-80. PubMed ID: 2665890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plastic changes underlying vestibular compensation in the guinea-pig persist in isolated, in vitro whole brain preparations.
    Vibert N; Babalian A; Serafin M; Gasc JP; Mühlethaler M; Vidal PP
    Neuroscience; 1999; 93(2):413-32. PubMed ID: 10465424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of vestibulogastrointestinal symptoms during vestibular compensation after unilateral labyrinthectomy in rats.
    Lee JH; Ameer AN; Choi MA; Lee MY; Kim MS; Park BR
    Otol Neurotol; 2010 Feb; 31(2):241-9. PubMed ID: 20101163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vestibular compensation: Neural mechanisms and clinical implications for the treatment of vertigo.
    Takeda N; Matsuda K; Fukuda J; Sato G; Uno A; Kitahara T
    Auris Nasus Larynx; 2024 Apr; 51(2):328-336. PubMed ID: 38114342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitatory amino acid receptors in normal and abnormal vestibular function.
    Smith PF; de Waele C; Vidal PP; Darlington CL
    Mol Neurobiol; 1991; 5(2-4):369-87. PubMed ID: 1668393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of MK801 on Fos expression in the rat brainstem after unilateral labyrinthectomy.
    Kitahara T; Takeda N; Saika T; Kubo T; Kiyama H
    Brain Res; 1995 Nov; 700(1-2):182-90. PubMed ID: 8624709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dose-response analysis of the beneficial effects of the ACTH-(4-9) analogue, Org 2766, on behavioural recovery following unilateral labyrinthectomy in guinea-pig.
    Gilchrist DP; Darlington CL; Smith PF
    Br J Pharmacol; 1994 Jan; 111(1):358-63. PubMed ID: 8012719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular basis of vestibular compensation: analysis and modelling of the role of the commissural inhibitory system.
    Graham BP; Dutia MB
    Exp Brain Res; 2001 Apr; 137(3-4):387-96. PubMed ID: 11355384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Dynamic vestibular compensation in vestibular peripheral diseases].
    Kitahara T; Horii A; Kondoh K; Okumura S; Kubo T
    Nihon Jibiinkoka Gakkai Kaiho; 2007 Nov; 110(11):720-7. PubMed ID: 18064876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fos-enkephalin signaling in the rat medial vestibular nucleus facilitates vestibular compensation.
    Kitahara T; Kaneko T; Horii A; Fukushima M; Kizawa-Okumura K; Takeda N; Kubo T
    J Neurosci Res; 2006 Jun; 83(8):1573-83. PubMed ID: 16547969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal dynamics of brain-derived neurotrophic factor mRNA induction in the vestibulo-olivary network during vestibular compensation.
    Li YX; Hashimoto T; Tokuyama W; Miyashita Y; Okuno H
    J Neurosci; 2001 Apr; 21(8):2738-48. PubMed ID: 11306626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasticity of GABA(a) system during ageing: focus on vestibular compensation and possible pharmacological intervention.
    Giardino L; Zanni M; Fernandez M; Battaglia A; Pignataro O; Calzà L
    Brain Res; 2002 Mar; 929(1):76-86. PubMed ID: 11852033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The NMDA antagonists MK801 and CPP disrupt compensation for unilateral labyrinthectomy in the guinea pig.
    Smith PF; Darlington CL
    Neurosci Lett; 1988 Dec; 94(3):309-13. PubMed ID: 3060764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal activity in the guinea pig medial vestibular nucleus in vitro following chronic unilateral labyrinthectomy.
    Darlington CL; Smith PF; Hubbard JI
    Neurosci Lett; 1989 Oct; 105(1-2):143-8. PubMed ID: 2485877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of intra-vestibular nucleus administration of brain-derived neurotrophic factor (BDNF) on recovery from peripheral vestibular damage in guinea pig.
    Maingay MG; Sansom AJ; Kerr DR; Smith PF; Darlington CL
    Neuroreport; 2000 Aug; 11(11):2429-32. PubMed ID: 10943698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vestibular compensation: the neuro-otologist's best friend.
    Lacour M; Helmchen C; Vidal PP
    J Neurol; 2016 Apr; 263 Suppl 1():S54-64. PubMed ID: 27083885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular basis of vestibular compensation: changes in intrinsic excitability of MVN neurones.
    Cameron SA; Dutia MB
    Neuroreport; 1997 Jul; 8(11):2595-9. PubMed ID: 9261834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.