BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 17606605)

  • 1. Comparisons of mutants lacking the Golgi UDP-galactose or GDP-mannose transporters establish that phosphoglycans are important for promastigote but not amastigote virulence in Leishmania major.
    Capul AA; Hickerson S; Barron T; Turco SJ; Beverley SM
    Infect Immun; 2007 Sep; 75(9):4629-37. PubMed ID: 17606605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a compensatory mutant (lpg2-REV) of Leishmania major able to survive as amastigotes within macrophages without LPG2-dependent glycoconjugates and its significance to virulence and immunization strategies.
    Späth GF; Lye LF; Segawa H; Turco SJ; Beverley SM
    Infect Immun; 2004 Jun; 72(6):3622-7. PubMed ID: 15155672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two functionally divergent UDP-Gal nucleotide sugar transporters participate in phosphoglycan synthesis in Leishmania major.
    Capul AA; Barron T; Dobson DE; Turco SJ; Beverley SM
    J Biol Chem; 2007 May; 282(19):14006-17. PubMed ID: 17347153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leishmania major phosphoglycans influence the host early immune response by modulating dendritic cell functions.
    Liu D; Kebaier C; Pakpour N; Capul AA; Beverley SM; Scott P; Uzonna JE
    Infect Immun; 2009 Aug; 77(8):3272-83. PubMed ID: 19487470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leishmania donovani lacking the Golgi GDP-Man transporter LPG2 exhibit attenuated virulence in mammalian hosts.
    Gaur U; Showalter M; Hickerson S; Dalvi R; Turco SJ; Wilson ME; Beverley SM
    Exp Parasitol; 2009 Jul; 122(3):182-91. PubMed ID: 19328787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Golgi GDP-mannose uptake requires Leishmania LPG2. A member of a eukaryotic family of putative nucleotide-sugar transporters.
    Ma D; Russell DG; Beverley SM; Turco SJ
    J Biol Chem; 1997 Feb; 272(6):3799-805. PubMed ID: 9013638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Leishmania GDP-mannose transporter is an autonomous, multi-specific, hexameric complex of LPG2 subunits.
    Hong K; Ma D; Beverley SM; Turco SJ
    Biochemistry; 2000 Feb; 39(8):2013-22. PubMed ID: 10684651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leishmania major glycosylation mutants require phosphoglycans (lpg2-) but not lipophosphoglycan (lpg1-) for survival in permissive sand fly vectors.
    Svárovská A; Ant TH; Seblová V; Jecná L; Beverley SM; Volf P
    PLoS Negl Trop Dis; 2010 Jan; 4(1):e580. PubMed ID: 20084096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major.
    Späth GF; Epstein L; Leader B; Singer SM; Avila HA; Turco SJ; Beverley SM
    Proc Natl Acad Sci U S A; 2000 Aug; 97(16):9258-63. PubMed ID: 10908670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycosylation defects and virulence phenotypes of Leishmania mexicana phosphomannomutase and dolicholphosphate-mannose synthase gene deletion mutants.
    Garami A; Mehlert A; Ilg T
    Mol Cell Biol; 2001 Dec; 21(23):8168-83. PubMed ID: 11689705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Golgi-located NTPDase1 of Leishmania major is required for lipophosphoglycan elongation and normal lesion development whereas secreted NTPDase2 is dispensable for virulence.
    Sansom FM; Ralton JE; Sernee MF; Cohen AM; Hooker DJ; Hartland EL; Naderer T; McConville MJ
    PLoS Negl Trop Dis; 2014 Dec; 8(12):e3402. PubMed ID: 25521752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Leishmania mexicana A600 genes are functionally required for amastigote replication.
    Murray AS; Lynn MA; McMaster WR
    Mol Biochem Parasitol; 2010 Aug; 172(2):80-9. PubMed ID: 20307588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of phosphoglycans in Leishmania-sand fly interactions.
    Sacks DL; Modi G; Rowton E; Späth G; Epstein L; Turco SJ; Beverley SM
    Proc Natl Acad Sci U S A; 2000 Jan; 97(1):406-11. PubMed ID: 10618431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanded Proteomic Survey of the Human Parasite Leishmania major Focusing on Changes in Null Mutants of the Golgi GDP-Mannose/Fucose/Arabinopyranose Transporter
    Polanco G; Scott NE; Lye LF; Beverley SM
    Microbiol Spectr; 2022 Dec; 10(6):e0305222. PubMed ID: 36394313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of a Leishmania thymidine kinase in flagellum formation, promastigote shape and growth as well as virulence.
    Thiel M; Harder S; Wiese M; Kroemer M; Bruchhaus I
    Mol Biochem Parasitol; 2008 Apr; 158(2):152-62. PubMed ID: 18222009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose Transporters and Virulence in
    Feng X; Tran KD; Sanchez MA; Al Mezewghi H; Landfear SM
    mSphere; 2018 Aug; 3(4):. PubMed ID: 30068561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential Impact of LPG-and PG-Deficient Leishmania major Mutants on the Immune Response of Human Dendritic Cells.
    Favila MA; Geraci NS; Jayakumar A; Hickerson S; Mostrom J; Turco SJ; Beverley SM; McDowell MA
    PLoS Negl Trop Dis; 2015 Dec; 9(12):e0004238. PubMed ID: 26630499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoglycan repeat-deficient Leishmania mexicana parasites remain infectious to macrophages and mice.
    Ilg T; Demar M; Harbecke D
    J Biol Chem; 2001 Feb; 276(7):4988-97. PubMed ID: 11071892
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Jesus-Santos FH; Lobo-Silva J; Ramos PIP; Descoteaux A; Lima JB; Borges VM; Farias LP
    Front Cell Infect Microbiol; 2020; 10():408. PubMed ID: 32903718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistence without pathology in phosphoglycan-deficient Leishmania major.
    Späth GF; Lye LF; Segawa H; Sacks DL; Turco SJ; Beverley SM
    Science; 2003 Aug; 301(5637):1241-3. PubMed ID: 12947201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.