These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 17607012)
1. Regulatory T cells, transforming growth factor-beta, and immune suppression. Wan YY; Flavell RA Proc Am Thorac Soc; 2007 Jul; 4(3):271-6. PubMed ID: 17607012 [TBL] [Abstract][Full Text] [Related]
2. Transforming growth factor-beta: recent advances on its role in immune tolerance. Mantel PY; Schmidt-Weber CB Methods Mol Biol; 2011; 677():303-38. PubMed ID: 20941619 [TBL] [Abstract][Full Text] [Related]
3. FOXP3+ regulatory T cells: from suppression of rejection to induction of renal allograft tolerance. Dummer CD; Carpio VN; Gonçalves LF; Manfro RC; Veronese FV Transpl Immunol; 2012 Jan; 26(1):1-10. PubMed ID: 21939765 [TBL] [Abstract][Full Text] [Related]
4. Transforming growth factor-beta and the immune response: implications for anticancer therapy. Wrzesinski SH; Wan YY; Flavell RA Clin Cancer Res; 2007 Sep; 13(18 Pt 1):5262-70. PubMed ID: 17875754 [TBL] [Abstract][Full Text] [Related]
5. Smad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T plasticity and Th1 development. Takimoto T; Wakabayashi Y; Sekiya T; Inoue N; Morita R; Ichiyama K; Takahashi R; Asakawa M; Muto G; Mori T; Hasegawa E; Saika S; Hara T; Nomura M; Yoshimura A J Immunol; 2010 Jul; 185(2):842-55. PubMed ID: 20548029 [TBL] [Abstract][Full Text] [Related]
6. Neutralization of interleukin-10 or transforming growth factor-β decreases the percentages of CD4+ CD25+ Foxp3+ regulatory T cells in septic mice, thereby leading to an improved survival. Hiraki S; Ono S; Tsujimoto H; Kinoshita M; Takahata R; Miyazaki H; Saitoh D; Hase K Surgery; 2012 Feb; 151(2):313-22. PubMed ID: 21982068 [TBL] [Abstract][Full Text] [Related]
7. Identification and characterization of Foxp3(+) gammadelta T cells in mouse and human. Kang N; Tang L; Li X; Wu D; Li W; Chen X; Cui L; Ba D; He W Immunol Lett; 2009 Aug; 125(2):105-13. PubMed ID: 19539651 [TBL] [Abstract][Full Text] [Related]
8. FOXP3+ regulatory T cells: control of FOXP3 expression by pharmacological agents. Ohkura N; Hamaguchi M; Sakaguchi S Trends Pharmacol Sci; 2011 Mar; 32(3):158-66. PubMed ID: 21237521 [TBL] [Abstract][Full Text] [Related]
9. TGF-β: the sword, the wand, and the shield of FOXP3(+) regulatory T cells. Tran DQ J Mol Cell Biol; 2012 Feb; 4(1):29-37. PubMed ID: 22158907 [TBL] [Abstract][Full Text] [Related]
11. Foxp3-transduced polyclonal regulatory T cells suppress NK cell functions in a TGF-beta dependent manner. Zhou H; Chen L; You Y; Zou L; Zou P Autoimmunity; 2010 Jun; 43(4):299-307. PubMed ID: 20166879 [TBL] [Abstract][Full Text] [Related]
12. Transforming growth factor-beta: an important role in CD4+CD25+ regulatory T cells and immune tolerance. Zhang L; Yi H; Xia XP; Zhao Y Autoimmunity; 2006 Jun; 39(4):269-76. PubMed ID: 16891215 [TBL] [Abstract][Full Text] [Related]
13. Retinoic acid attenuates acute heart rejection by increasing regulatory T cell and repressing differentiation of Th17 cell in the presence of TGF-β. Wang G; Zhong A; Wang S; Dong N; Sun Z; Xia J Transpl Int; 2010 Oct; 23(10):986-97. PubMed ID: 20412539 [TBL] [Abstract][Full Text] [Related]
14. Stimulation of α7 nicotinic acetylcholine receptor by nicotine increases suppressive capacity of naturally occurring CD4+CD25+ regulatory T cells in mice in vitro. Wang DW; Zhou RB; Yao YM; Zhu XM; Yin YM; Zhao GJ; Dong N; Sheng ZY J Pharmacol Exp Ther; 2010 Dec; 335(3):553-61. PubMed ID: 20843956 [TBL] [Abstract][Full Text] [Related]
15. Regulation and role of transforming growth factor-beta in immune tolerance induction and inflammation. Schmidt-Weber CB; Blaser K Curr Opin Immunol; 2004 Dec; 16(6):709-16. PubMed ID: 15511662 [TBL] [Abstract][Full Text] [Related]
16. TGF-beta1 modulates Foxp3 expression and regulatory activity in distinct CD4+ T cell subsets. Pyzik M; Piccirillo CA J Leukoc Biol; 2007 Aug; 82(2):335-46. PubMed ID: 17475784 [TBL] [Abstract][Full Text] [Related]
17. Transforming growth factor-beta1-induced CD4+CD25+ regulatory T cells in vitro reverse and prevent a murine lupus-like syndrome of chronic graft-versus-host disease. Su H; Ye DQ; Wang BL; Fang XH; Chen J; Wang Q; Li WX; Zhang N Br J Dermatol; 2008 Jun; 158(6):1197-209. PubMed ID: 18410422 [TBL] [Abstract][Full Text] [Related]
18. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Wan YY; Flavell RA Nature; 2007 Feb; 445(7129):766-70. PubMed ID: 17220876 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms of tolerance induced by transforming growth factor-beta-treated antigen-presenting cells: CD8 regulatory T cells inhibit the effector phase of the immune response in primed mice through a mechanism involving Fas ligand. Kosiewicz MM; Alard P; Liang S; Clark SL Int Immunol; 2004 May; 16(5):697-706. PubMed ID: 15096489 [TBL] [Abstract][Full Text] [Related]
20. CD4(+) CD25(+) T regulatory cells do not transfer oral tolerance to peanut allergens in a mouse model of peanut allergy. Marcondes Rezende M; Hassing I; Bol-Schoenmakers M; Bleumink R; Boon L; van Bilsen J; Pieters R Clin Exp Allergy; 2011 Sep; 41(9):1324-33. PubMed ID: 21338425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]