BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 17607526)

  • 1. Study on the shape memory effects of poly(L-lactide-co-epsilon-caprolactone) biodegradable polymers.
    Lu XL; Sun ZJ; Cai W; Gao ZY
    J Mater Sci Mater Med; 2008 Jan; 19(1):395-9. PubMed ID: 17607526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers.
    Fernández J; Etxeberria A; Sarasua JR
    J Mech Behav Biomed Mater; 2012 May; 9():100-12. PubMed ID: 22498288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.
    Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J
    Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of polymer composition on rheological and degradation properties of temperature-responsive gelling systems composed of acyl-capped PCLA-PEG-PCLA.
    Petit A; Müller B; Meijboom R; Bruin P; van de Manakker F; Versluijs-Helder M; de Leede LG; Doornbos A; Landin M; Hennink WE; Vermonden T
    Biomacromolecules; 2013 Sep; 14(9):3172-82. PubMed ID: 23875877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of chain microstructures on mechanical behavior and aging of a poly(L-lactide-co-ε-caprolactone) biomedical thermoplastic-elastomer.
    Fernández J; Etxeberria A; Ugartemendia JM; Petisco S; Sarasua JR
    J Mech Behav Biomed Mater; 2012 Aug; 12():29-38. PubMed ID: 22659093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micellization phenomena of amphiphilic block copolymers based on methoxy poly(ethylene glycol) and either crystalline or amorphous poly(caprolactone-b-lactide).
    Zhang J; Wang LQ; Wang H; Tu K
    Biomacromolecules; 2006 Sep; 7(9):2492-500. PubMed ID: 16961309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plastic deformation of amorphous poly(L/DL-lactide): structure evolution and physical properties.
    Pluta M; Galeski A
    Biomacromolecules; 2007 Jun; 8(6):1836-43. PubMed ID: 17472336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical and thermal property characterization of poly-l-lactide (PLLA) scaffold developed using pressure-controllable green foaming technology.
    Sheng SJ; Hu X; Wang F; Ma QY; Gu MF
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():612-622. PubMed ID: 25686990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tensile behavior and dynamic mechanical analysis of novel poly(lactide/δ-valerolactone) statistical copolymers.
    Fernández J; Larrañaga A; Etxeberria A; Sarasua JR
    J Mech Behav Biomed Mater; 2014 Jul; 35():39-50. PubMed ID: 24732304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization, degradation, and mechanical strength of poly(D,L-lactide-co-epsilon-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-co-epsilon-caprolactone).
    Bramfeldt H; Sarazin P; Vermette P
    J Biomed Mater Res A; 2007 Nov; 83(2):503-11. PubMed ID: 17503493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel biodegradable shape memory material based on partial inclusion complex formation between alpha-cyclodextrin and poly(epsilon-caprolactone).
    Luo H; Liu Y; Yu Z; Zhang S; Li B
    Biomacromolecules; 2008 Oct; 9(10):2573-7. PubMed ID: 18798668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A shape memory stent of poly(ε-caprolactone-co-DL-lactide) copolymer for potential treatment of esophageal stenosis.
    Yu X; Wang L; Huang M; Gong T; Li W; Cao Y; Ji D; Wang P; Wang J; Zhou S
    J Mater Sci Mater Med; 2012 Feb; 23(2):581-9. PubMed ID: 22057969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterostereocomplexation between biodegradable and optically active polyesters as a versatile preparation method for biodegradable materials.
    Tsuji H; Yamamoto S; Okumura A; Sugiura Y
    Biomacromolecules; 2010 Jan; 11(1):252-8. PubMed ID: 20000347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable polyesters as crystallization-accelerating agents of poly(l-lactide).
    Tsuji H; Sawada M; Bouapao L
    ACS Appl Mater Interfaces; 2009 Aug; 1(8):1719-30. PubMed ID: 20355788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable poly(ethylene oxide)/poly(epsilon-caprolactone) multiblock copolymers.
    Cohn D; Stern T; González MF; Epstein J
    J Biomed Mater Res; 2002 Feb; 59(2):273-81. PubMed ID: 11745563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation.
    Deng Z; Guo Y; Zhao X; Li L; Dong R; Guo B; Ma PX
    Acta Biomater; 2016 Dec; 46():234-244. PubMed ID: 27640917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, characterization, and in vitro degradation of a biodegradable photo-cross-linked film from liquid poly(epsilon-caprolactone-co-lactide-co-glycolide) diacrylate.
    Shen JY; Pan XY; Lim CH; Chan-Park MB; Zhu X; Beuerman RW
    Biomacromolecules; 2007 Feb; 8(2):376-85. PubMed ID: 17291060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape memory in un-cross-linked biodegradable polymers.
    Wong YS; Xiong Y; Venkatraman SS; Boey FY
    J Biomater Sci Polym Ed; 2008; 19(2):175-91. PubMed ID: 18237491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of poly(ɛ-caprolactone-co-L-lactide) on thermal and functional properties of poly(L-lactide).
    Qin Y; Liu S; Zhang Y; Yuan M; Li H; Yuan M
    Int J Biol Macromol; 2014 Sep; 70():327-33. PubMed ID: 25020084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastomeric hydrolyzable porous scaffolds: copolymers of aliphatic polyesters and a polyether-ester.
    Odelius K; Plikk P; Albertsson AC
    Biomacromolecules; 2005; 6(5):2718-25. PubMed ID: 16153111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.