These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 17608009)
1. Concentration of tetrachloroethylene in indoor air at a former dry cleaner facility as a function of subsurface contamination: a case study. Eklund BM; Simon MA J Air Waste Manag Assoc; 2007 Jun; 57(6):753-60. PubMed ID: 17608009 [TBL] [Abstract][Full Text] [Related]
2. Intrusion of chlorinated hydrocarbons and their degradation products from contaminated soil. Measurement of indoor air quality and biomonitoring by analysis of end-exhaled air. Scheepers PTJ; Graumans MHF; van Dael M; de Werdt L; Pinckaers N; Beckmann G; Anzion R Sci Total Environ; 2019 Feb; 653():223-230. PubMed ID: 30412867 [TBL] [Abstract][Full Text] [Related]
3. An alternative generic subslab soil gas-to-indoor air attenuation factor for application in commercial, industrial, and other nonresidential settings. Hallberg KE; Levy LC; Gonzalez-Abraham R; Lutes CC; Lund LG; Caldwell D J Air Waste Manag Assoc; 2021 Sep; 71(9):1148-1158. PubMed ID: 33989123 [TBL] [Abstract][Full Text] [Related]
4. Biological monitoring of exposure to perchloroethylene in dry cleaning workers. Macca I; Carrieri M; Scapellato ML; Scopa P; Trevisan A; Bartolucci GB Med Lav; 2012; 103(5):382-93. PubMed ID: 23077798 [TBL] [Abstract][Full Text] [Related]
5. Phytoforensics: Trees as bioindicators of potential indoor exposure via vapor intrusion. Wilson JL; Samaranayake VA; Limmer MA; Burken JG PLoS One; 2018; 13(2):e0193247. PubMed ID: 29451904 [TBL] [Abstract][Full Text] [Related]
6. Indoor exposure to perchloroethylene (PCE) in individuals living with dry-cleaning workers. Aggazzotti G; Fantuzzi G; Predieri G; Righi E; Moscardelli S Sci Total Environ; 1994 Nov; 156(2):133-7. PubMed ID: 7992032 [TBL] [Abstract][Full Text] [Related]
7. Environmental assessments on schools located on or near former industrial facilities: Feedback on attenuation factors for the prediction of indoor air quality. Derycke V; Coftier A; Zornig C; Léprond H; Scamps M; Gilbert D Sci Total Environ; 2018 Jun; 626():754-761. PubMed ID: 29396339 [TBL] [Abstract][Full Text] [Related]
8. Probabilistic approach to estimating indoor air concentrations of chlorinated volatile organic compounds from contaminated groundwater: a case study in San Antonio, Texas. Johnston JE; Gibson JM Environ Sci Technol; 2011 Feb; 45(3):1007-13. PubMed ID: 21162557 [TBL] [Abstract][Full Text] [Related]
9. Fluid Flow Model for Predicting the Intrusion Rate of Subsurface Contaminant Vapors into Buildings. McAlary TA; Gallinatti J; Thrupp G; Wertz W; Mali D; Dawson H Environ Sci Technol; 2018 Aug; 52(15):8438-8445. PubMed ID: 29939732 [TBL] [Abstract][Full Text] [Related]
10. Screening houses for vapor intrusion risks: a multiple regression analysis approach. Johnston JE; Gibson JM Environ Sci Technol; 2013 Jun; 47(11):5595-602. PubMed ID: 23659435 [TBL] [Abstract][Full Text] [Related]
11. An investigation of indoor air contamination in residences above dry cleaners. Schreiber JS; House S; Prohonic E; Smead G; Hudson C; Styk M; Lauber J Risk Anal; 1993 Jun; 13(3):335-44. PubMed ID: 8341809 [TBL] [Abstract][Full Text] [Related]
12. Temporal variability of indoor air concentrations under natural conditions in a house overlying a dilute chlorinated solvent groundwater plume. Holton C; Luo H; Dahlen P; Gorder K; Dettenmaier E; Johnson PC Environ Sci Technol; 2013; 47(23):13347-54. PubMed ID: 24180600 [TBL] [Abstract][Full Text] [Related]
13. Results of a long-term study of vapor intrusion at four large buildings at the NASA Ames Research Center. Brenner D J Air Waste Manag Assoc; 2010 Jun; 60(6):747-58. PubMed ID: 20565001 [TBL] [Abstract][Full Text] [Related]
14. [Investigation of health effects associated with solvents used in dry cleaning workplace (report 1). Tetrachloroethylene concentration in working environment]. Kitazume M; Hayashi M; Yazawa A; Sato Y; Kawamura T Nihon Koshu Eisei Zasshi; 1990 Mar; 37(3):165-76. PubMed ID: 2131978 [TBL] [Abstract][Full Text] [Related]
15. Occupational exposure to perchloroethylene in dry-cleaning shops in Tehran, Iran. Azimi Pirsaraei SR; Khavanin A; Asilian H; Soleimanian A Ind Health; 2009 Apr; 47(2):155-9. PubMed ID: 19367044 [TBL] [Abstract][Full Text] [Related]
16. Spatiotemporal variability of tetrachloroethylene in residential indoor air due to vapor intrusion: a longitudinal, community-based study. Johnston JE; Gibson JM J Expo Sci Environ Epidemiol; 2014 Nov; 24(6):564-71. PubMed ID: 23549403 [TBL] [Abstract][Full Text] [Related]
17. Vapor intrusion attenuation factors relative to subslab and source, reconsidered in light of background data. Yao Y; Wu Y; Suuberg EM; Provoost J; Shen R; Ma J; Liu J J Hazard Mater; 2015 Apr; 286():553-61. PubMed ID: 25618001 [TBL] [Abstract][Full Text] [Related]
18. The passive sampler assisted human exposure risk characterization for tetrachloroethene soil vapor intrusion scenario. Kim PG; Tarafdar A; Lee KY; Kwon JH; Hong Y Environ Res; 2023 Dec; 238(Pt 2):117238. PubMed ID: 37783324 [TBL] [Abstract][Full Text] [Related]
19. Temporal moisture content variability beneath and external to a building and the potential effects on vapor intrusion risk assessment. Tillman FD; Weaver JW Sci Total Environ; 2007 Jun; 379(1):1-15. PubMed ID: 17442380 [TBL] [Abstract][Full Text] [Related]
20. Tetrachloroethylene emissions and exposure in dry cleaning. Räisänen J; Niemelä R; Rosenberg C J Air Waste Manag Assoc; 2001 Dec; 51(12):1671-5. PubMed ID: 15666472 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]