These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 17608469)

  • 21. Prediction of biological targets for compounds using multiple-category Bayesian models trained on chemogenomics databases.
    Nidhi ; Glick M; Davies JW; Jenkins JL
    J Chem Inf Model; 2006; 46(3):1124-33. PubMed ID: 16711732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of the Vitotox and RadarScreen assays for the rapid assessment of genotoxicity in the early research phase of drug development.
    Westerink WM; Stevenson JC; Lauwers A; Griffioen G; Horbach GJ; Schoonen WG
    Mutat Res; 2009 May; 676(1-2):113-30. PubMed ID: 19393335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantification of frequent-hitter behavior based on historical high-throughput screening data.
    M Nissink JW; Blackburn S
    Future Med Chem; 2014 Jun; 6(10):1113-26. PubMed ID: 25078133
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of recursion forests in the sequential screening process: consensus selection by multiple recursion trees.
    van Rhee AM
    J Chem Inf Comput Sci; 2003; 43(3):941-8. PubMed ID: 12767153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing the primary screening efficiency by multiple replicate testing: a quantitative analysis of hit confirmation and false screening results of a biochemical assay.
    Zhang JH; Wu X; Sills MA
    J Biomol Screen; 2005 Oct; 10(7):695-704. PubMed ID: 16129776
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enrichment of high-throughput screening data with increasing levels of noise using support vector machines, recursive partitioning, and laplacian-modified naive bayesian classifiers.
    Glick M; Jenkins JL; Nettles JH; Hitchings H; Davies JW
    J Chem Inf Model; 2006; 46(1):193-200. PubMed ID: 16426055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of Titration-Based Screening for the Rapid Pilot Testing of High-Throughput Assays.
    Zhang JH; Kang ZB; Ardayfio O; Ho PI; Smith T; Wallace I; Bowes S; Hill WA; Auld DS
    J Biomol Screen; 2014 Jun; 19(5):651-60. PubMed ID: 24246376
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An empirical process for the design of high-throughput screening deck filters.
    Pearce BC; Sofia MJ; Good AC; Drexler DM; Stock DA
    J Chem Inf Model; 2006; 46(3):1060-8. PubMed ID: 16711725
    [TBL] [Abstract][Full Text] [Related]  

  • 30. HTS promiscuity analyses for accelerating decision making.
    Böcker A; Bonneau PR; Edwards PJ
    J Biomol Screen; 2011 Aug; 16(7):765-74. PubMed ID: 21680863
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of virtual screening performance of support vector machines trained by sparsely distributed active compounds.
    Ma XH; Wang R; Yang SY; Li ZR; Xue Y; Wei YC; Low BC; Chen YZ
    J Chem Inf Model; 2008 Jun; 48(6):1227-37. PubMed ID: 18533644
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gene expression trends and protein features effectively complement each other in gene function prediction.
    Wabnik K; Hvidsten TR; Kedzierska A; Van Leene J; De Jaeger G; Beemster GT; Komorowski J; Kuiper MT
    Bioinformatics; 2009 Feb; 25(3):322-30. PubMed ID: 19050035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of mixture distributions to deconvolute the behavior of "hits" and controls in high-throughput screening data.
    Buxser S; Chapman DL
    Anal Biochem; 2007 Feb; 361(2):197-209. PubMed ID: 17214952
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Target selection for structural genomics: an overview.
    Marsden RL; Orengo CA
    Methods Mol Biol; 2008; 426():3-25. PubMed ID: 18542854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elucidation of structure-activity relationship pathways in biological screening data.
    Wawer M; Peltason L; Bajorath J
    J Med Chem; 2009 Feb; 52(4):1075-80. PubMed ID: 19140668
    [TBL] [Abstract][Full Text] [Related]  

  • 36. "Lead hopping". Validation of topomer similarity as a superior predictor of similar biological activities.
    Cramer RD; Jilek RJ; Guessregen S; Clark SJ; Wendt B; Clark RD
    J Med Chem; 2004 Dec; 47(27):6777-91. PubMed ID: 15615527
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robust statistical methods for hit selection in RNA interference high-throughput screening experiments.
    Zhang XD; Yang XC; Chung N; Gates A; Stec E; Kunapuli P; Holder DJ; Ferrer M; Espeseth AS
    Pharmacogenomics; 2006 Apr; 7(3):299-309. PubMed ID: 16610941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biochemical approaches for discovering protein-protein interactions.
    Miernyk JA; Thelen JJ
    Plant J; 2008 Feb; 53(4):597-609. PubMed ID: 18269571
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uncovering false positives on a virtual screening search for cruzain inhibitors.
    Malvezzi A; de Rezende L; Izidoro MA; Cezari MH; Juliano L; do Amaral A
    Bioorg Med Chem Lett; 2008 Jan; 18(1):350-4. PubMed ID: 17981033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Introduction: cell-based assays for high-throughput screening.
    An WF; Tolliday NJ
    Methods Mol Biol; 2009; 486():1-12. PubMed ID: 19347612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.