BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 17609126)

  • 1. Use of site-directed cysteine and disulfide chemistry to probe protein structure and dynamics: applications to soluble and transmembrane receptors of bacterial chemotaxis.
    Bass RB; Butler SL; Chervitz SA; Gloor SL; Falke JJ
    Methods Enzymol; 2007; 423():25-51. PubMed ID: 17609126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that the adaptation region of the aspartate receptor is a dynamic four-helix bundle: cysteine and disulfide scanning studies.
    Winston SE; Mehan R; Falke JJ
    Biochemistry; 2005 Sep; 44(38):12655-66. PubMed ID: 16171380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal motions of surface alpha-helices in the D-galactose chemosensory receptor. Detection by disulfide trapping.
    Careaga CL; Falke JJ
    J Mol Biol; 1992 Aug; 226(4):1219-35. PubMed ID: 1518053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The PICM chemical scanning method for identifying domain-domain and protein-protein interfaces: applications to the core signaling complex of E. coli chemotaxis.
    Bass RB; Miller AS; Gloor SL; Falke JJ
    Methods Enzymol; 2007; 423():3-24. PubMed ID: 17609125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lock on/off disulfides identify the transmembrane signaling helix of the aspartate receptor.
    Chervitz SA; Falke JJ
    J Biol Chem; 1995 Oct; 270(41):24043-53. PubMed ID: 7592603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmembrane signaling by the aspartate receptor: engineered disulfides reveal static regions of the subunit interface.
    Chervitz SA; Lin CM; Falke JJ
    Biochemistry; 1995 Aug; 34(30):9722-33. PubMed ID: 7626643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signaling domain of the aspartate receptor is a helical hairpin with a localized kinase docking surface: cysteine and disulfide scanning studies.
    Bass RB; Coleman MD; Falke JJ
    Biochemistry; 1999 Jul; 38(29):9317-27. PubMed ID: 10413506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cysteine and disulfide scanning reveals two amphiphilic helices in the linker region of the aspartate chemoreceptor.
    Butler SL; Falke JJ
    Biochemistry; 1998 Jul; 37(30):10746-56. PubMed ID: 9692965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and dynamics of Escherichia coli chemosensory receptors. Engineered sulfhydryl studies.
    Careaga CL; Falke JJ
    Biophys J; 1992 Apr; 62(1):209-16; discussion 217-9. PubMed ID: 1318100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conserved glycine residues in the cytoplasmic domain of the aspartate receptor play essential roles in kinase coupling and on-off switching.
    Coleman MD; Bass RB; Mehan RS; Falke JJ
    Biochemistry; 2005 May; 44(21):7687-95. PubMed ID: 15909983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The aspartate receptor cytoplasmic domain: in situ chemical analysis of structure, mechanism and dynamics.
    Bass RB; Falke JJ
    Structure; 1999 Jul; 7(7):829-40. PubMed ID: 10425684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cysteine and disulfide scanning reveals a regulatory alpha-helix in the cytoplasmic domain of the aspartate receptor.
    Danielson MA; Bass RB; Falke JJ
    J Biol Chem; 1997 Dec; 272(52):32878-88. PubMed ID: 9407066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyzing transmembrane chemoreceptors using in vivo disulfide formation between introduced cysteines.
    Lai WC; Hazelbauer GL
    Methods Enzymol; 2007; 423():299-316. PubMed ID: 17609137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the dark state tertiary structure in the cytoplasmic domain of rhodopsin: proximities between amino acids deduced from spontaneous disulfide bond formation between Cys316 and engineered cysteines in cytoplasmic loop 1.
    Klein-Seetharaman J; Hwa J; Cai K; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 2001 Oct; 40(42):12472-8. PubMed ID: 11601970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal domain motions of CheA kinase in solution: Disulfide trapping reveals the motional constraints leading to trans-autophosphorylation.
    Gloor SL; Falke JJ
    Biochemistry; 2009 Apr; 48(16):3631-44. PubMed ID: 19256549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of 19F NMR to probe protein structure and conformational changes.
    Danielson MA; Falke JJ
    Annu Rev Biophys Biomol Struct; 1996; 25():163-95. PubMed ID: 8800468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of a conserved alpha-helix in the kinase-docking region of the aspartate receptor by cysteine and disulfide scanning.
    Bass RB; Falke JJ
    J Biol Chem; 1998 Sep; 273(39):25006-14. PubMed ID: 9737956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based approach to the prediction of disulfide bonds in proteins.
    Salam NK; Adzhigirey M; Sherman W; Pearlman DA
    Protein Eng Des Sel; 2014 Oct; 27(10):365-74. PubMed ID: 24817698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping out regions on the surface of the aspartate receptor that are essential for kinase activation.
    Mehan RS; White NC; Falke JJ
    Biochemistry; 2003 Mar; 42(10):2952-9. PubMed ID: 12627961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of transmembrane protein structure by disulfide cross-linking: the Escherichia coli Tar receptor.
    Pakula AA; Simon MI
    Proc Natl Acad Sci U S A; 1992 May; 89(9):4144-8. PubMed ID: 1315053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.