BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 17609337)

  • 21. Protein-energy malnutrition decreases the expression of TLR-4/MD-2 and CD14 receptors in peritoneal macrophages and reduces the synthesis of TNF-alpha in response to lipopolysaccharide (LPS) in mice.
    Fock RA; Vinolo MA; de Moura Sá Rocha V; de Sá Rocha LC; Borelli P
    Cytokine; 2007 Nov; 40(2):105-14. PubMed ID: 17950615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toll-like receptors and fungal infections: the role of TLR2, TLR4 and MyD88 in paracoccidioidomycosis.
    Calich VL; Pina A; Felonato M; Bernardino S; Costa TA; Loures FV
    FEMS Immunol Med Microbiol; 2008 Jun; 53(1):1-7. PubMed ID: 18384366
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification and Characterization of Zebrafish Tlr4 Coreceptor Md-2.
    Loes AN; Hinman MN; Farnsworth DR; Miller AC; Guillemin K; Harms MJ
    J Immunol; 2021 Mar; 206(5):1046-1057. PubMed ID: 33472906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lipid rafts regulate ethanol-induced activation of TLR4 signaling in murine macrophages.
    Fernandez-Lizarbe S; Pascual M; Gascon MS; Blanco A; Guerri C
    Mol Immunol; 2008 Apr; 45(7):2007-16. PubMed ID: 18061674
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glycosaminoglycans reduced inflammatory response by modulating toll-like receptor-4 in LPS-stimulated chondrocytes.
    Campo GM; Avenoso A; Campo S; Traina P; D'Ascola A; Calatroni A
    Arch Biochem Biophys; 2009 Nov; 491(1-2):7-15. PubMed ID: 19800307
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural similarity between the hydrophobic fluorescent probe and lipid A as a ligand of MD-2.
    Mancek-Keber M; Jerala R
    FASEB J; 2006 Sep; 20(11):1836-42. PubMed ID: 16940155
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lipopolysaccharide-induced inflammatory cytokine production by Schwann's cells dependent upon TLR4 expression.
    Hao HN; Peduzzi-Nelson JD; VandeVord PJ; Barami K; DeSilva SP; Pelinkovic D; Morawa LG
    J Neuroimmunol; 2009 Jul; 212(1-2):26-34. PubMed ID: 19525014
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Role of Carbohydrates in the Lipopolysaccharide (LPS)/Toll-Like Receptor 4 (TLR4) Signalling.
    Cochet F; Peri F
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29099761
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toll-like receptor (TLR) 2 induced through TLR4 signaling initiated by Helicobacter pylori cooperatively amplifies iNOS induction in gastric epithelial cells.
    Uno K; Kato K; Atsumi T; Suzuki T; Yoshitake J; Morita H; Ohara S; Kotake Y; Shimosegawa T; Yoshimura T
    Am J Physiol Gastrointest Liver Physiol; 2007 Nov; 293(5):G1004-12. PubMed ID: 17855767
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A TLR4/MD2 fusion protein inhibits LPS-induced pro-inflammatory signaling in hepatic stellate cells.
    Schnabl B; Brandl K; Fink M; Gross P; Taura K; Gäbele E; Hellerbrand C; Falk W
    Biochem Biophys Res Commun; 2008 Oct; 375(2):210-4. PubMed ID: 18694726
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MyD88-independent activation of a novel actin-Cdc42/Rac pathway is required for Toll-like receptor-stimulated phagocytosis.
    Kong L; Ge BX
    Cell Res; 2008 Jul; 18(7):745-55. PubMed ID: 18542102
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of endotoxic principle of bacterial lipopolysaccharide and its recognition by the innate immune systems of hosts.
    Kusumoto S; Fukase K
    Chem Rec; 2006; 6(6):333-43. PubMed ID: 17304523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural biology of the LPS recognition.
    Jerala R
    Int J Med Microbiol; 2007 Sep; 297(5):353-63. PubMed ID: 17481951
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insights into the binding mode of curcumin to MD-2: studies from molecular docking, molecular dynamics simulations and experimental assessments.
    Wang Z; Chen G; Chen L; Liu X; Fu W; Zhang Y; Li C; Liang G; Cai Y
    Mol Biosyst; 2015 Jul; 11(7):1933-8. PubMed ID: 25923908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of curcumin treatment on protein phosphorylation in K562 cells.
    Blasius R; Dicato M; Diederich M
    Ann N Y Acad Sci; 2007 Jan; 1095():377-87. PubMed ID: 17404050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MD-2 and Der p 2 - a tale of two cousins or distant relatives?
    Keber MM; Gradisar H; Jerala R
    J Endotoxin Res; 2005; 11(3):186-92. PubMed ID: 15949148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New MD2 inhibitors derived from curcumin with improved anti-inflammatory activity.
    Zhang Y; Liu Z; Wu J; Bai B; Chen H; Xiao Z; Chen L; Zhao Y; Lum H; Wang Y; Zhang H; Liang G
    Eur J Med Chem; 2018 Mar; 148():291-305. PubMed ID: 29466778
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Free thiol group of MD-2 as the target for inhibition of the lipopolysaccharide-induced cell activation.
    Mancek-Keber M; Gradisar H; Iñigo Pestaña M; Martinez de Tejada G; Jerala R
    J Biol Chem; 2009 Jul; 284(29):19493-500. PubMed ID: 19473973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics on human Toll-like receptor 4 complexation to MD-2: the coreceptor stabilizing function.
    de Aguiar C; Costa MG; Verli H
    Proteins; 2015 Feb; 83(2):373-82. PubMed ID: 25488602
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative efficacy of vanilloids in inhibiting toll-like receptor-4 (TLR-4)/myeloid differentiation factor (MD-2) homodimerisation.
    Mai CW; Kang YB; Hamzah AS; Pichika MR
    Food Funct; 2018 Jun; 9(6):3344-3350. PubMed ID: 29808897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.