These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 17609378)

  • 41. The Onecut transcription factor HNF-6 regulates in motor neurons the formation of the neuromuscular junctions.
    Audouard E; Schakman O; René F; Huettl RE; Huber AB; Loeffler JP; Gailly P; Clotman F
    PLoS One; 2012; 7(12):e50509. PubMed ID: 23227180
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vivo time-lapse imaging of synaptic takeover associated with naturally occurring synapse elimination.
    Walsh MK; Lichtman JW
    Neuron; 2003 Jan; 37(1):67-73. PubMed ID: 12526773
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of olivary electrical coupling in cerebellar motor learning.
    Van Der Giessen RS; Koekkoek SK; van Dorp S; De Gruijl JR; Cupido A; Khosrovani S; Dortland B; Wellershaus K; Degen J; Deuchars J; Fuchs EC; Monyer H; Willecke K; De Jeu MT; De Zeeuw CI
    Neuron; 2008 May; 58(4):599-612. PubMed ID: 18498740
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The relationship of neuromuscular synapse elimination to synaptic degeneration and pathology: insights from WldS and other mutant mice.
    Gillingwater TH; Ribchester RR
    J Neurocytol; 2003; 32(5-8):863-81. PubMed ID: 15034273
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Activity-driven synapse elimination leads paradoxically to domination by inactive neurons.
    Barber MJ; Lichtman JW
    J Neurosci; 1999 Nov; 19(22):9975-85. PubMed ID: 10559405
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Perinatal switch from synchronous to asynchronous activity of motoneurons: link with synapse elimination.
    Buffelli M; Busetto G; Cangiano L; Cangiano A
    Proc Natl Acad Sci U S A; 2002 Oct; 99(20):13200-5. PubMed ID: 12242340
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Emergent central pattern generator behavior in gap-junction-coupled Hodgkin-Huxley style neuron model.
    Horn KG; Memelli H; Solomon IC
    Comput Intell Neurosci; 2012; 2012():173910. PubMed ID: 23365558
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neuronal coupling and uncoupling in the developing nervous system.
    Kandler K; Katz LC
    Curr Opin Neurobiol; 1995 Feb; 5(1):98-105. PubMed ID: 7773012
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Locomotion and propagated skin impulses in salps (Tunicata: Thaliacea).
    Mackie GO; Bone Q
    Biol Bull; 1977 Aug; 153(1):180-97. PubMed ID: 889945
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The timing of activity is a regulatory signal during development of neural connections.
    Favero M; Cangiano A; Busetto G
    J Mol Neurosci; 2014 Jul; 53(3):324-9. PubMed ID: 24114571
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Persistent electrical coupling and locomotory dysfunction in the zebrafish mutant shocked.
    Luna VM; Wang M; Ono F; Gleason MR; Dallman JE; Mandel G; Brehm P
    J Neurophysiol; 2004 Oct; 92(4):2003-9. PubMed ID: 15201312
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Early development of the Drosophila neuromuscular junction: a model for studying neuronal networks in development.
    Chiba A
    Int Rev Neurobiol; 1999; 43():1-24. PubMed ID: 10218152
    [No Abstract]   [Full Text] [Related]  

  • 53. HepaCAM shapes astrocyte territories, stabilizes gap-junction coupling, and influences neuronal excitability.
    Sofroniew MV
    Neuron; 2021 Aug; 109(15):2365-2367. PubMed ID: 34352210
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Activity Regulates the Incidence of Heteronymous Sensory-Motor Connections.
    Mendelsohn AI; Simon CM; Abbott LF; Mentis GZ; Jessell TM
    Neuron; 2015 Jul; 87(1):111-23. PubMed ID: 26094608
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Specificity of sensory-motor connections encoded by Sema3e-Plxnd1 recognition.
    Pecho-Vrieseling E; Sigrist M; Yoshida Y; Jessell TM; Arber S
    Nature; 2009 Jun; 459(7248):842-6. PubMed ID: 19421194
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrical Synapses Mediate Embryonic Hyperactivity in a Zebrafish Model of Fragile X Syndrome.
    Miles KD; Barker CM; Russell KP; Appel BH; Doll CA
    J Neurosci; 2024 Jul; 44(31):. PubMed ID: 38969506
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Muscarinic Receptors in Developmental Axonal Competition at the Neuromuscular Junction.
    Tomàs J; Lanuza MA; Santafé MM; Cilleros-Mañé V; Just-Borràs L; Balanyà-Segura M; Polishchuk A; Nadal L; Tomàs M; Garcia N
    Mol Neurobiol; 2023 Mar; 60(3):1580-1593. PubMed ID: 36526930
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synaptic Projections of Motoneurons Within the Spinal Cord.
    Beato M; Bhumbra G
    Adv Neurobiol; 2022; 28():151-168. PubMed ID: 36066825
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Normal Development and Pathology of Motoneurons: Anatomy, Electrophysiological Properties, Firing Patterns and Circuit Connectivity.
    Chalif JI; Mentis GZ
    Adv Neurobiol; 2022; 28():63-85. PubMed ID: 36066821
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Control of mammalian locomotion by ventral spinocerebellar tract neurons.
    Chalif JI; Martínez-Silva ML; Pagiazitis JG; Murray AJ; Mentis GZ
    Cell; 2022 Jan; 185(2):328-344.e26. PubMed ID: 35063074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.