BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 17609701)

  • 21. Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors.
    Kim D
    J Opt Soc Am A Opt Image Sci Vis; 2006 Sep; 23(9):2307-14. PubMed ID: 16912758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design of metal-cladded near-field fiber probes with a dispersive body-of-revolution finite-difference time-domain method.
    Liu L; He S
    Appl Opt; 2005 Jun; 44(17):3429-37. PubMed ID: 16007838
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evanescent field coupling between two parallel close contact SMS fiber structures.
    Wu Q; Ma Y; Yuan J; Semenova Y; Wang P; Yu C; Farrell G
    Opt Express; 2012 Jan; 20(3):3098-109. PubMed ID: 22330547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Soliton switching and multi-frequency generation in a nonlinear photonic crystal fiber coupler.
    Khan KR; Wu TX; Christodoulides DN; Stegeman GI
    Opt Express; 2008 Jun; 16(13):9417-28. PubMed ID: 18575507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance.
    Lin TJ; Chung MF
    Biosens Bioelectron; 2009 Jan; 24(5):1213-8. PubMed ID: 18718753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical modeling of fiber lasers with long and ultra-long ring cavity.
    Yarutkina IA; Shtyrina OV; Fedoruk MP; Turitsyn SK
    Opt Express; 2013 May; 21(10):12942-50. PubMed ID: 23736514
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Study on the temperature character of the optic-fiber surface-plasmon-wave sensor].
    Cao ZX; Liang DK; Guo MJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2003 Feb; 23(1):31-4. PubMed ID: 12939961
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing.
    Andrade GF; Fan M; Brolo AG
    Biosens Bioelectron; 2010 Jun; 25(10):2270-5. PubMed ID: 20353887
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensitivity of ex situ and in situ spectral surface plasmon resonance sensors in the analysis of protein arrays.
    Yuk JS; Jung JW; Jung SH; Han JA; Kim YM; Ha KS
    Biosens Bioelectron; 2005 May; 20(11):2189-96. PubMed ID: 15797315
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescence enhancements of fiber-optic biosensor with metallic nanoparticles.
    Ng MY; Liu WC
    Opt Express; 2009 Mar; 17(7):5867-78. PubMed ID: 19333356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activated polarization pulling and de-correlation of signal and pump states of polarization in a fiber Raman amplifier.
    Sergeyev SV
    Opt Express; 2011 Nov; 19(24):24268-79. PubMed ID: 22109453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing.
    Klantsataya E; François A; Ebendorff-Heidepriem H; Hoffmann P; Monro TM
    Sensors (Basel); 2015 Sep; 15(10):25090-102. PubMed ID: 26426022
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface plasmon resonance based fiber optic detection of chlorine utilizing polyvinylpyrolidone supported zinc oxide thin films.
    Tabassum R; Gupta BD
    Analyst; 2015 Mar; 140(6):1863-70. PubMed ID: 25635269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Critical coupling control of a microresonator by laser amplitude modulation.
    Chow JH; Taylor MA; Lam TT; Knittel J; Sawtell-Rickson JD; Shaddock DA; Gray MB; McClelland DE; Bowen WP
    Opt Express; 2012 May; 20(11):12622-30. PubMed ID: 22714249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of an optical fiber SPR sensor for living cell activation.
    Yanase Y; Araki A; Suzuki H; Tsutsui T; Kimura T; Okamoto K; Nakatani T; Hiragun T; Hide M
    Biosens Bioelectron; 2010 Jan; 25(5):1244-7. PubMed ID: 19880304
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Absorption and related optical dispersion effects on the spectral response of a surface plasmon resonance sensor.
    Nakkach M; Lecaruyer P; Bardin F; Sakly J; Ben Lakhdar Z; Canva M
    Appl Opt; 2008 Nov; 47(33):6177-82. PubMed ID: 19023380
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical and experimental analysis of analyte transport in a fiber-optic, protein C immuno-biosensor.
    Tang L; Kwon HJ; Kang KA
    Biotechnol Bioeng; 2004 Dec; 88(7):869-79. PubMed ID: 15515165
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Designing efficient zero calibration point for phase-sensitive surface plasmon resonance biosensing.
    Patskovsky S; Vallieres M; Maisonneuve M; Song IH; Meunier M; Kabashin AV
    Opt Express; 2009 Feb; 17(4):2255-63. PubMed ID: 19219129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Femtosecond parabolic pulse shaping in normally dispersive optical fibers.
    Sukhoivanov IA; Iakushev SO; Shulika OV; Díez A; Andrés M
    Opt Express; 2013 Jul; 21(15):17769-85. PubMed ID: 23938650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface-plasmon-resonance-based fiber-optic refractive index sensor: sensitivity enhancement.
    Bhatia P; Gupta BD
    Appl Opt; 2011 May; 50(14):2032-6. PubMed ID: 21556104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.