These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 1760972)

  • 1. Selective reduction of oscillatory potentials and pattern electroretinograms after retinal ganglion cell damage by disease in humans or by kainic acid toxicity in cats.
    Vaegan ; Graham SL; Goldberg I; Millar TJ
    Doc Ophthalmol; 1991; 77(3):237-53. PubMed ID: 1760972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of kainic acid and NMDA on the pattern electroretinogram, the scotopic threshold response, the oscillatory potentials and the electroretinogram in the urethane anaesthetized cat.
    Vaegan ; Millar TJ
    Vision Res; 1994 May; 34(9):1111-25. PubMed ID: 8184556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective ganglion cell functional loss in rats with experimental glaucoma.
    Fortune B; Bui BV; Morrison JC; Johnson EC; Dong J; Cepurna WO; Jia L; Barber S; Cioffi GA
    Invest Ophthalmol Vis Sci; 2004 Jun; 45(6):1854-62. PubMed ID: 15161850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma.
    Frishman LJ; Shen FF; Du L; Robson JG; Harwerth RS; Smith EL; Carter-Dawson L; Crawford ML
    Invest Ophthalmol Vis Sci; 1996 Jan; 37(1):125-41. PubMed ID: 8550316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ganglion cell contributions to the rat full-field electroretinogram.
    Bui BV; Fortune B
    J Physiol; 2004 Feb; 555(Pt 1):153-73. PubMed ID: 14578484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The gradient of retinal functional changes during acute intraocular pressure elevation.
    Bui BV; Edmunds B; Cioffi GA; Fortune B
    Invest Ophthalmol Vis Sci; 2005 Jan; 46(1):202-13. PubMed ID: 15623775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flash and pattern electroretinogram changes with optic atrophy and glaucoma.
    Vaegan ; Graham SL; Goldberg I; Buckland L; Hollows FC
    Exp Eye Res; 1995 Jun; 60(6):697-706. PubMed ID: 7641852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pattern-reversal electroretinograms in unilateral glaucoma.
    Wanger P; Persson HE
    Invest Ophthalmol Vis Sci; 1983 Jun; 24(6):749-53. PubMed ID: 6853101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomy and physiology of visual evoked potentials and electroretinograms.
    Celesia GG
    Neurol Clin; 1988 Nov; 6(4):657-79. PubMed ID: 3070333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between photopic negative response of focal electroretinograms and local loss of retinal neurons in glaucoma.
    Tamada K; Machida S; Oikawa T; Miyamoto H; Nishimura T; Kurosaka D
    Curr Eye Res; 2010 Feb; 35(2):155-64. PubMed ID: 20136426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity.
    Viswanathan S; Frishman LJ; Robson JG
    Invest Ophthalmol Vis Sci; 2000 Aug; 41(9):2797-810. PubMed ID: 10937600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroretinogram and visual-evoked potential assessment of retinal and central visual function in a rat ocular hypertension model of glaucoma.
    Georgiou AL; Guo L; Francesca Cordeiro M; Salt TE
    Curr Eye Res; 2014 May; 39(5):472-86. PubMed ID: 24215221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemogenetic Activation of ipRGCs Drives Changes in Dark-Adapted (Scotopic) Electroretinogram.
    Milosavljevic N; Allen AE; Cehajic-Kapetanovic J; Lucas RJ
    Invest Ophthalmol Vis Sci; 2016 Nov; 57(14):6305-6312. PubMed ID: 27893096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional and morphological effects of β-estradiol in eyes with N-methyl-D-Aspartate-induced retinal neurotoxicity in rats.
    Yamashita H; Yamada-Nakayama C; Sugihara K; Tsuji S; Sakurai T; Ban Y; Tsutsumi S; Sato Y
    Exp Eye Res; 2011 Jul; 93(1):75-81. PubMed ID: 21600896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma.
    Viswanathan S; Frishman LJ; Robson JG; Harwerth RS; Smith EL
    Invest Ophthalmol Vis Sci; 1999 May; 40(6):1124-36. PubMed ID: 10235545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring retinal morphologic and functional changes in mice following optic nerve crush.
    Liu Y; McDowell CM; Zhang Z; Tebow HE; Wordinger RJ; Clark AF
    Invest Ophthalmol Vis Sci; 2014 May; 55(6):3766-74. PubMed ID: 24854856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of short-term intraocular pressure elevation on the rabbit electroretinogram.
    Feghali JG; Jin JC; Odom JV
    Invest Ophthalmol Vis Sci; 1991 Jul; 32(8):2184-9. PubMed ID: 2071332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abnormal pattern electroretinogram in Alzheimer's disease: evidence for retinal ganglion cell degeneration?
    Katz B; Rimmer S; Iragui V; Katzman R
    Ann Neurol; 1989 Aug; 26(2):221-5. PubMed ID: 2774509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical electrophysiology relevant for early glaucoma diagnosis.
    Korth M; Koca M
    Curr Opin Ophthalmol; 1993 Apr; 4(2):22-8. PubMed ID: 10148458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraocular pressure lowering is associated with an increase in the photopic negative response (PhNR) amplitude in glaucoma and ocular hypertensive eyes.
    Niyadurupola N; Luu CD; Nguyen DQ; Geddes K; Tan GX; Wong CC; Tran T; Coote MA; Crowston JG
    Invest Ophthalmol Vis Sci; 2013 Mar; 54(3):1913-9. PubMed ID: 23385794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.