These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 17609807)

  • 1. Structure control of a carbon-based noble-metal-free fuel cell cathode catalyst leading to high power output.
    Maruyama J; Abe I
    Chem Commun (Camb); 2007 Jul; (27):2879-81. PubMed ID: 17609807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A class of non-precious metal composite catalysts for fuel cells.
    Bashyam R; Zelenay P
    Nature; 2006 Sep; 443(7107):63-6. PubMed ID: 16957726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells.
    Qu L; Liu Y; Baek JB; Dai L
    ACS Nano; 2010 Mar; 4(3):1321-6. PubMed ID: 20155972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore development in carbonized hemoglobin by concurrently generated MgO template for activity enhancement as fuel cell cathode catalyst.
    Maruyama J; Hasegawa T; Amano T; Muramatsu Y; Gullikson EM; Orikasa Y; Uchimoto Y
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4837-43. PubMed ID: 22091636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A carbon-supported copper complex of 3,5-diamino-1,2,4-triazole as a cathode catalyst for alkaline fuel cell applications.
    Brushett FR; Thorum MS; Lioutas NS; Naughton MS; Tornow C; Jhong HR; Gewirth AA; Kenis PJ
    J Am Chem Soc; 2010 Sep; 132(35):12185-7. PubMed ID: 20715828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Faradaic electrochemical activation of catalysis.
    Vayenas CG; Koutsodontis CG
    J Chem Phys; 2008 May; 128(18):182506. PubMed ID: 18532791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced cathode materials for polymer electrolyte fuel cells based on pt/ metal oxides: from model electrodes to catalyst systems.
    Fabbri E; Pătru A; Rabis A; Kötz R; Schmidt TJ
    Chimia (Aarau); 2014; 68(4):217-20. PubMed ID: 24983601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial fuel cell cathodes with poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors.
    Zhang F; Saito T; Cheng S; Hickner MA; Logan BE
    Environ Sci Technol; 2010 Feb; 44(4):1490-5. PubMed ID: 20099808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using layer-by-layer assembly of polyaniline fibers in the fast preparation of high performance fuel cell nanostructured membrane electrodes.
    Michel M; Ettingshausen F; Scheiba F; Wolz A; Roth C
    Phys Chem Chem Phys; 2008 Jul; 10(25):3796-801. PubMed ID: 18563240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous carbon and carbon/metal oxide microfibers with well-controlled pore structure and interface.
    Shi Q; Liang H; Feng D; Wang J; Stucky GD
    J Am Chem Soc; 2008 Apr; 130(15):5034-5. PubMed ID: 18355006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A low-cost biofuel cell with pH-dependent power output based on porous carbon as matrix.
    Liu Y; Wang M; Zhao F; Liu B; Dong S
    Chemistry; 2005 Aug; 11(17):4970-4. PubMed ID: 15968703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated, electrically contacted NAD(P)+-dependent enzyme-carbon nanotube electrodes for biosensors and biofuel cell applications.
    Yan YM; Yehezkeli O; Willner I
    Chemistry; 2007; 13(36):10168-75. PubMed ID: 17937376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of graphene-supported noble metal hybrid nanostructures and their applications as advanced electrocatalysts for fuel cells.
    Zhu C; Dong S
    Nanoscale; 2013 Nov; 5(22):10765-75. PubMed ID: 24060985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociative electron transfer to organic chlorides: electrocatalysis at metal cathodes.
    Isse AA; Gottardello S; Durante C; Gennaro A
    Phys Chem Chem Phys; 2008 May; 10(17):2409-16. PubMed ID: 18414732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Platinum- and membrane-free swiss-roll mixed-reactant alkaline fuel cell.
    Aziznia A; Oloman CW; Gyenge EL
    ChemSusChem; 2013 May; 6(5):847-55. PubMed ID: 23589385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells.
    Nevin KP; Richter H; Covalla SF; Johnson JP; Woodard TL; Orloff AL; Jia H; Zhang M; Lovley DR
    Environ Microbiol; 2008 Oct; 10(10):2505-14. PubMed ID: 18564184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.
    Park YJ; Park JW; Jun CH
    Acc Chem Res; 2008 Feb; 41(2):222-34. PubMed ID: 18247521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy.
    Feindel KW; Bergens SH; Wasylishen RE
    Phys Chem Chem Phys; 2007 Apr; 9(15):1850-7. PubMed ID: 17415498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of high catalyst utilization electrodes for polymer electrolyte fuel cells.
    Song JM; Suzuki S; Uchida H; Watanabe M
    Langmuir; 2006 Jul; 22(14):6422-8. PubMed ID: 16800709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of nitrogen-doped carbon powders as low-cost and durable cathodic catalyst to air-cathode microbial fuel cells.
    Shi X; Feng Y; Wang X; Lee H; Liu J; Qu Y; He W; Kumar SM; Ren N
    Bioresour Technol; 2012 Mar; 108():89-93. PubMed ID: 22265594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.