BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17609983)

  • 21. Boreal and temperate trees show strong acclimation of respiration to warming.
    Reich PB; Sendall KM; Stefanski A; Wei X; Rich RL; Montgomery RA
    Nature; 2016 Mar; 531(7596):633-6. PubMed ID: 26982730
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ecophysiology of exotic and native shrubs in Southern Wisconsin : II. Annual growth and carbon gain.
    Harrington RA; Brown BJ; Reich PB; Fownes JH
    Oecologia; 1989 Aug; 80(3):368-373. PubMed ID: 28312064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Global change shifts vegetation and plant-parasite interactions in a boreal mire.
    Wiedermann MM; Nordin A; Gunnarsson U; Nilsson MB; Ericson L
    Ecology; 2007 Feb; 88(2):454-64. PubMed ID: 17479763
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Soil moisture redistribution as a mechanism of facilitation in savanna tree-shrub clusters.
    Zou CB; Barnes PW; Archer S; McMurtry CR
    Oecologia; 2005 Aug; 145(1):32-40. PubMed ID: 15942764
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Canopy position affects the relationships between leaf respiration and associated traits in a tropical rainforest in Far North Queensland.
    Weerasinghe LK; Creek D; Crous KY; Xiang S; Liddell MJ; Turnbull MH; Atkin OK
    Tree Physiol; 2014 Jun; 34(6):564-84. PubMed ID: 24722001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-term experimental warming, shading and nutrient addition affect the concentration of phenolic compounds in arctic-alpine deciduous and evergreen dwarf shrubs.
    Hansen AH; Jonasson S; Michelsen A; Julkunen-Tiitto R
    Oecologia; 2006 Feb; 147(1):1-11. PubMed ID: 16180043
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiological indicators of habitat quality for a migratory songbird breeding in a forest invaded by non-native Japanese barberry (
    Seewagen CL; Slayton EJ; Smith Pagano S
    Conserv Physiol; 2020; 8(1):coaa037. PubMed ID: 32391153
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Within-twig leaf distribution patterns differ among plant life-forms in a subtropical Chinese forest.
    Meng F; Cao R; Yang D; Niklas KJ; Sun S
    Tree Physiol; 2013 Jul; 33(7):753-62. PubMed ID: 23933830
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature response of respiration and respiratory quotients of 16 co-occurring temperate tree species.
    Patterson AE; Arkebauer R; Quallo C; Heskel MA; Li X; Boelman N; Griffin KL
    Tree Physiol; 2018 Sep; 38(9):1319-1332. PubMed ID: 29425346
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Ability of typical greenery shrubs of Beijing to adsorb and arrest PM2.5 ].
    Liang D; Wang B; Wang YQ; Zhang HL; Yang SN; Li A
    Huan Jing Ke Xue; 2014 Sep; 35(9):3605-11. PubMed ID: 25518685
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temperate deciduous shrub phenology: the overlooked forest layer.
    Donnelly A; Yu R
    Int J Biometeorol; 2021 Mar; 65(3):343-355. PubMed ID: 31209600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Responses of leaf respiration to temperature and leaf characteristics in three deciduous tree species vary with site water availability.
    Turnbull MH; Whitehead D; Tissue DT; Schuster WS; Brown KJ; Griffin KL
    Tree Physiol; 2001 Jun; 21(9):571-8. PubMed ID: 11390301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The effect of light and temperature of the CO
    Schulze ED
    Oecologia; 1972 Sep; 9(3):235-258. PubMed ID: 28313125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A cost-benefit analysis of leaf carbon economy with consideration of seasonal changes in leaf traits for sympatric deciduous and evergreen congeners: implications for their coexistence.
    Ye Y; Kitayama K; Onoda Y
    New Phytol; 2022 May; 234(3):1047-1058. PubMed ID: 35133649
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vegetation shift from deciduous to evergreen dwarf shrubs in response to selective herbivory offsets carbon losses: evidence from 19 years of warming and simulated herbivory in the subarctic tundra.
    Ylänne H; Stark S; Tolvanen A
    Glob Chang Biol; 2015 Oct; 21(10):3696-711. PubMed ID: 25950664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Late growing season carbon subsidy in native gymnosperms in a northern temperate forest.
    Li X; Xu C; Li Z; Feng J; Tissue DT; Griffin KL
    Tree Physiol; 2019 Jun; 39(6):971-982. PubMed ID: 31086983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vertical and seasonal variation in the δ¹³C of leaf-respired CO₂ in a mixed conifer forest.
    Ubierna N; Marshall JD
    Tree Physiol; 2011 Apr; 31(4):414-27. PubMed ID: 21551356
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of Japanese barberry (Ranunculales: Berberidaceae) removal and resulting microclimatic changes on Ixodes scapularis (Acari: Ixodidae) abundances in Connecticut, USA.
    Williams SC; Ward JS
    Environ Entomol; 2010 Dec; 39(6):1911-21. PubMed ID: 22182557
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Variation in leaf and twig CO2 flux as a function of plant size: a comparison of seedlings, saplings and trees.
    Sendall KM; Reich PB
    Tree Physiol; 2013 Jul; 33(7):713-29. PubMed ID: 23872734
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Do seasonal changes in light availability influence the inverse leafing phenology of the neotropical dry forest understory shrub Bonellia nervosa (Theophrastaceae)?
    Chaves OM; Avalos G
    Rev Biol Trop; 2008 Mar; 56(1):257-68. PubMed ID: 18624241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.