BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

622 related articles for article (PubMed ID: 17610176)

  • 1. Spinal sonography in newborns and infants - part II: spinal dysraphism and tethered cord.
    Deeg KH; Lode HM; Gassner I
    Ultraschall Med; 2008 Feb; 29(1):77-88. PubMed ID: 17610176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal sonography in infants with cutaneous birth markers in the lumbo-sacral region--an important sign of occult spinal dysrhaphism and tethered cord.
    Lode HM; Deeg KH; Krauss J
    Ultraschall Med; 2008 Dec; 29 Suppl 5():281-8. PubMed ID: 17610175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Diagnosis and surgical treatment of tethered cord syndrome accompanied by congenital dermal sinus tract in adults].
    Xie JC; Chen XD; Yang J
    Beijing Da Xue Xue Bao Yi Xue Ban; 2022 Dec; 54(6):1163-1166. PubMed ID: 36533349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging of congenital anomalies and variations of the caudal spine and back in neonates and small infants.
    Schenk JP; Herweh C; Günther P; Rohrschneider W; Zieger B; Tröger J
    Eur J Radiol; 2006 Apr; 58(1):3-14. PubMed ID: 16431066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic resonance imaging of spinal dysraphism.
    Tortori-Donati P; Rossi A; Biancheri R; Cama A
    Top Magn Reson Imaging; 2001 Dec; 12(6):375-409. PubMed ID: 11744877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occult spinal dysraphisms in newborns with skin markers: role of ultrasonography and magnetic resonance imaging.
    Ausili E; Maresca G; Massimi L; Morgante L; Romagnoli C; Rendeli C
    Childs Nerv Syst; 2018 Feb; 34(2):285-291. PubMed ID: 29075839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging in spine and spinal cord malformations.
    Rossi A; Biancheri R; Cama A; Piatelli G; Ravegnani M; Tortori-Donati P
    Eur J Radiol; 2004 May; 50(2):177-200. PubMed ID: 15081131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinal cord malformations.
    Zerah M; Kulkarni AV
    Handb Clin Neurol; 2013; 112():975-91. PubMed ID: 23622306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of magnetic resonance imaging to detect occult spinal dysraphism in infants.
    O'Neill BR; Gallegos D; Herron A; Palmer C; Stence NV; Hankinson TC; Corbett Wilkinson C; Handler MH
    J Neurosurg Pediatr; 2017 Feb; 19(2):217-226. PubMed ID: 27911245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinal dysraphism: MR imaging rationale.
    Rossi A; Cama A; Piatelli G; Ravegnani M; Biancheri R; Tortori-Donati P
    J Neuroradiol; 2004 Jan; 31(1):3-24. PubMed ID: 15026728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MR imaging in the tethered spinal cord syndrome.
    Raghavan N; Barkovich AJ; Edwards M; Norman D
    AJR Am J Roentgenol; 1989 Apr; 152(4):843-52. PubMed ID: 2784267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Filum terminale lipoma revealed by screening spinal ultrasonography in infants with simple sacral dimple.
    Oh JE; Lim GY; Kim HW; Kim SY
    Childs Nerv Syst; 2020 May; 36(5):1037-1042. PubMed ID: 31807897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectrum of nonterminal myelocystoceles.
    Rossi A; Piatelli G; Gandolfo C; Pavanello M; Hoffmann C; Van Goethem JW; Cama A; Tortori-Donati P
    Neurosurgery; 2006 Mar; 58(3):509-15; discussion 509-15. PubMed ID: 16528191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatty filum terminale (FFT) as a secondary tethering element in children with closed spinal dysraphism.
    Gupta A; Rajshekhar V
    Childs Nerv Syst; 2018 May; 34(5):925-932. PubMed ID: 29260294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The tethered cord syndrome].
    Bode H; Sauer M; Strassburg HM; Gilsbach HJ
    Klin Padiatr; 1985; 197(5):409-14. PubMed ID: 3906257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic magnetic resonance imaging parameters for objective assessment of the magnitude of tethered cord syndrome in patients with spinal dysraphism.
    Singh S; Behari S; Singh V; Bhaisora KS; Haldar R; Krishna Kumar G ; Mishra P; Phadke RV
    Acta Neurochir (Wien); 2019 Jan; 161(1):147-159. PubMed ID: 30456429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. John Caffey Award. Sonography of the caudal spine and back: congenital anomalies in children.
    Naidich TP; Fernbach SK; McLone DG; Shkolnik A
    AJR Am J Roentgenol; 1984 Jun; 142(6):1229-42. PubMed ID: 6372416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonography reveals a high prevalence of lower spinal dysraphism in children with urogenital anomalies.
    Koo BN; Hong JY; Song HT; Kim JM; Kil HK
    Acta Anaesthesiol Scand; 2012 May; 56(5):624-8. PubMed ID: 22338610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The simple sacral dimple: diagnostic yield of ultrasound in neonates.
    Kucera JN; Coley I; O'Hara S; Kosnik EJ; Coley BD
    Pediatr Radiol; 2015 Feb; 45(2):211-6. PubMed ID: 24996813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adult tethered cord syndrome: relative to spinal cord length and filum thickness.
    Yamada S; Won DJ; Yamada SM; Hadden A; Siddiqi J
    Neurol Res; 2004 Oct; 26(7):732-4. PubMed ID: 15494113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.