These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 17610595)

  • 1. Anticipatory changes in beta synchrony in the human corticospinal system and associated improvements in task performance.
    Androulidakis AG; Doyle LM; Yarrow K; Litvak V; Gilbertson TP; Brown P
    Eur J Neurosci; 2007 Jun; 25(12):3758-65. PubMed ID: 17610595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Existing motor state is favored at the expense of new movement during 13-35 Hz oscillatory synchrony in the human corticospinal system.
    Gilbertson T; Lalo E; Doyle L; Di Lazzaro V; Cioni B; Brown P
    J Neurosci; 2005 Aug; 25(34):7771-9. PubMed ID: 16120778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corrective movements in response to displacements in visual feedback are more effective during periods of 13-35 Hz oscillatory synchrony in the human corticospinal system.
    Androulidakis AG; Doyle LM; Gilbertson TP; Brown P
    Eur J Neurosci; 2006 Dec; 24(11):3299-304. PubMed ID: 17156390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corticospinal beta-range coherence is highly dependent on the pre-stationary motor state.
    Omlor W; Patino L; Mendez-Balbuena I; Schulte-Mönting J; Kristeva R
    J Neurosci; 2011 Jun; 31(22):8037-45. PubMed ID: 21632925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output.
    Kristeva R; Patino L; Omlor W
    Neuroimage; 2007 Jul; 36(3):785-92. PubMed ID: 17493837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in corticospinal excitability and the direction of evoked movements during motor preparation: a TMS study.
    van Elswijk G; Schot WD; Stegeman DF; Overeem S
    BMC Neurosci; 2008 Jun; 9():51. PubMed ID: 18559096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between imagined movement and the initiation of voluntary movement: a TMS study.
    Li S; Stevens JA; Rymer WZ
    Clin Neurophysiol; 2009 Jun; 120(6):1154-60. PubMed ID: 19250861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Only the Fastest Corticospinal Fibers Contribute to β Corticomuscular Coherence.
    Ibáñez J; Del Vecchio A; Rothwell JC; Baker SN; Farina D
    J Neurosci; 2021 Jun; 41(22):4867-4879. PubMed ID: 33893222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The strength of the corticospinal coherence depends on the predictability of modulated isometric forces.
    Mendez-Balbuena I; Naranjo JR; Wang X; Andrykiewicz A; Huethe F; Schulte-Mönting J; Hepp-Reymond MC; Kristeva R
    J Neurophysiol; 2013 Mar; 109(6):1579-88. PubMed ID: 23255723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oscillatory Corticospinal Activity during Static Contraction of Ankle Muscles Is Reduced in Healthy Old versus Young Adults.
    Spedden ME; Nielsen JB; Geertsen SS
    Neural Plast; 2018; 2018():3432649. PubMed ID: 29853842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prolonged reaction time during episodes of elevated β-band corticomuscular coupling and associated oscillatory muscle activity.
    Matsuya R; Ushiyama J; Ushiba J
    J Appl Physiol (1985); 2013 Apr; 114(7):896-904. PubMed ID: 23393066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor-evoked potentials reveal functional differences between dominant and non-dominant motor cortices during response preparation.
    Poole BJ; Mather M; Livesey EJ; Harris IM; Harris JA
    Cortex; 2018 Jun; 103():1-12. PubMed ID: 29533856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ascending beta oscillation from finger muscle to sensorimotor cortex contributes to enhanced steady-state isometric contraction in humans.
    Lim M; Kim JS; Kim M; Chung CK
    Clin Neurophysiol; 2014 Oct; 125(10):2036-45. PubMed ID: 24618217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of corticospinal motor control during overground and treadmill walking in humans.
    Roeder L; Boonstra TW; Smith SS; Kerr GK
    J Neurophysiol; 2018 Sep; 120(3):1017-1031. PubMed ID: 29847229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development of functional and directed corticomuscular connectivity during tonic ankle muscle contraction across childhood and adolescence.
    Spedden ME; Jensen P; Terkildsen CU; Jensen NJ; Halliday DM; Lundbye-Jensen J; Nielsen JB; Geertsen SS
    Neuroimage; 2019 May; 191():350-360. PubMed ID: 30818025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of Corticospinal Excitability of Trunk Muscles in Preparation of Rapid Arm Movement.
    Massé-Alarie H; Neige C; Bouyer LJ; Mercier C
    Neuroscience; 2018 Jan; 369():231-241. PubMed ID: 29174911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oscillatory beta activity mediates neuroplastic effects of motor cortex stimulation in humans.
    McAllister CJ; Rönnqvist KC; Stanford IM; Woodhall GL; Furlong PL; Hall SD
    J Neurosci; 2013 May; 33(18):7919-27. PubMed ID: 23637183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct Beta-band Oscillatory Circuits Underlie Corticospinal Gain Modulation.
    Khademi F; Royter V; Gharabaghi A
    Cereb Cortex; 2018 Apr; 28(4):1502-1515. PubMed ID: 29415124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of selective response preparation on corticospinal excitability.
    Young MS; Triggs WJ; Pendergast JF; Heilman KM
    Cortex; 2000 Feb; 36(1):19-29. PubMed ID: 10728894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced muscle selectivity during individuated finger movements in humans after damage to the motor cortex or corticospinal tract.
    Lang CE; Schieber MH
    J Neurophysiol; 2004 Apr; 91(4):1722-33. PubMed ID: 14668295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.