BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 17610869)

  • 1. Mechanisms of relaxation by carbon monoxide-releasing molecule-2 in murine gastric fundus and jejunum.
    De Backer O; Lefebvre RA
    Eur J Pharmacol; 2007 Oct; 572(2-3):197-206. PubMed ID: 17610869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the soluble guanylyl cyclase alpha1/alpha2 subunits in the relaxant effect of CO and CORM-2 in murine gastric fundus.
    De Backer O; Elinck E; Sips P; Buys E; Brouckaert P; Lefebvre RA
    Naunyn Schmiedebergs Arch Pharmacol; 2008 Nov; 378(5):493-502. PubMed ID: 18563392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon monoxide released by CORM-3 inhibits human platelets by a mechanism independent of soluble guanylate cyclase.
    Chlopicki S; Olszanecki R; Marcinkiewicz E; Lomnicka M; Motterlini R
    Cardiovasc Res; 2006 Jul; 71(2):393-401. PubMed ID: 16713591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relaxant effect of a water soluble carbon monoxide-releasing molecule (CORM-3) on spontaneously hypertensive rat aortas.
    Failli P; Vannacci A; Di Cesare Mannelli L; Motterlini R; Masini E
    Cardiovasc Drugs Ther; 2012 Aug; 26(4):285-92. PubMed ID: 22766583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of nitric oxide and carbon monoxide in N(omega)-Nitro-L-arginine methyl ester-resistant acetylcholine-induced relaxation in chicken carotid artery.
    Leo MD; Siddegowda YK; Kumar D; Tandan SK; Sastry KV; Prakash VR; Mishra SK
    Eur J Pharmacol; 2008 Oct; 596(1-3):111-7. PubMed ID: 18713623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ) inhibits relaxation of rabbit aortic rings induced by carbon monoxide, nitric oxide, and glyceryl trinitrate.
    Hussain AS; Marks GS; Brien JF; Nakatsu K
    Can J Physiol Pharmacol; 1997 Aug; 75(8):1034-7. PubMed ID: 9360020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of the vasorelaxing effects of CORM-3, a water-soluble carbon monoxide-releasing molecule: interactions with eNOS.
    Alshehri A; Bourguignon MP; Clavreul N; Badier-Commander C; Gosgnach W; Simonet S; Vayssettes-Courchay C; Cordi A; Fabiani JN; Verbeuren TJ; Félétou M
    Naunyn Schmiedebergs Arch Pharmacol; 2013 Mar; 386(3):185-96. PubMed ID: 23296254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divergent mechanisms involved in CO and CORM-2 induced vasorelaxation.
    Decaluwé K; Pauwels B; Verpoest S; Van de Voorde J
    Eur J Pharmacol; 2012 Jan; 674(2-3):370-7. PubMed ID: 22108549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation into the mechanism(s) of antithrombotic effects of carbon monoxide releasing molecule-3 (CORM-3).
    Soni H; Jain M; Mehta AA
    Thromb Res; 2011 Jun; 127(6):551-9. PubMed ID: 21376373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of small conductance K+ -channels attenuated melatonin-induced relaxation of serotonin-contracted rat gastric fundus.
    Storr M; Schusdziarra V; Allescher HD
    Can J Physiol Pharmacol; 2000 Oct; 78(10):799-806. PubMed ID: 11077980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for the interaction between nitric oxide and vasoactive intestinal polypeptide in the mouse gastric fundus.
    Ergün Y; Oğülener N
    J Pharmacol Exp Ther; 2001 Dec; 299(3):945-50. PubMed ID: 11714881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon monoxide-induced relaxation and distribution of haem oxygenase isoenzymes in the pig urethra and lower oesophagogastric junction.
    Werkström V; Ny L; Persson K; Andersson KE
    Br J Pharmacol; 1997 Jan; 120(2):312-8. PubMed ID: 9117125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of carbon monoxide on trout and lamprey vessels.
    Dombkowski RA; Whitfield NL; Motterlini R; Gao Y; Olson KR
    Am J Physiol Regul Integr Comp Physiol; 2009 Jan; 296(1):R141-9. PubMed ID: 19005018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon monoxide relaxes the female pig urethra as effectively as nitric oxide in the presence of YC-1.
    Schroder A; Hedlund P; Andersson KE
    J Urol; 2002 Apr; 167(4):1892-6. PubMed ID: 11912455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sirolimus causes relaxation of human vascular smooth muscle: a novel action of sirolimus mediated via ATP-sensitive potassium channels.
    Ghatta S; Tunstall RR; Kareem S; Rahman M; O'Rourke ST
    J Pharmacol Exp Ther; 2007 Mar; 320(3):1204-8. PubMed ID: 17164473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of protein kinase B/Akt and endothelial nitric oxide synthase mediates agmatine-induced endothelium-dependent relaxation.
    Santhanam AV; Viswanathan S; Dikshit M
    Eur J Pharmacol; 2007 Oct; 572(2-3):189-96. PubMed ID: 17640632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrergic and purinergic interplay in inhibitory transmission in rat gastric fundus.
    Vetri T; Bonvissuto F; Marino A; Postorino A
    Auton Autacoid Pharmacol; 2007 Jul; 27(3):151-7. PubMed ID: 17584445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule.
    Clark JE; Naughton P; Shurey S; Green CJ; Johnson TR; Mann BE; Foresti R; Motterlini R
    Circ Res; 2003 Jul; 93(2):e2-8. PubMed ID: 12842916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrergic relaxation in rat gastric fundus: influence of mechanism of induced tone and possible role of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase.
    Van Geldre LA; Lefebvre RA
    Life Sci; 2004 May; 74(26):3259-74. PubMed ID: 15094326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divergent molecular mechanisms underlay CO- and CORM-2-induced relaxation of corpora cavernosa.
    Decaluwé K; Pauwels B; Boydens C; Van de Voorde J
    J Sex Med; 2012 Sep; 9(9):2284-92. PubMed ID: 22759233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.