BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 17610894)

  • 1. Unfolding pathways of goat alpha-lactalbumin as revealed in multiple alignment of molecular dynamics trajectories.
    Oroguchi T; Ikeguchi M; Ota M; Kuwajima K; Kidera A
    J Mol Biol; 2007 Aug; 371(5):1354-64. PubMed ID: 17610894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the extra n-terminal methionine residue on the stability and folding of recombinant alpha-lactalbumin expressed in Escherichia coli.
    Chaudhuri TK; Horii K; Yoda T; Arai M; Nagata S; Terada TP; Uchiyama H; Ikura T; Tsumoto K; Kataoka H; Matsushima M; Kuwajima K; Kumagai I
    J Mol Biol; 1999 Jan; 285(3):1179-94. PubMed ID: 9887272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomically detailed description of the unfolding of alpha-lactalbumin by the combined use of experiments and simulations.
    Oroguchi T; Ikeguchi M; Saeki K; Kamagata K; Sawano Y; Tanokura M; Kidera A; Kuwajima K
    J Mol Biol; 2005 Nov; 354(1):164-72. PubMed ID: 16236317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tryptophan to phenylalanine substitutions allow differentiation of short- and long-range conformational changes during denaturation of goat alpha-lactalbumin.
    Vanhooren A; Chedad A; Farkas V; Majer Z; Joniau M; Van Dael H; Hanssens I
    Proteins; 2005 Jul; 60(1):118-30. PubMed ID: 15861407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different folding pathways taken by highly homologous proteins, goat alpha-lactalbumin and canine milk lysozyme.
    Nakamura T; Makabe K; Tomoyori K; Maki K; Mukaiyama A; Kuwajima K
    J Mol Biol; 2010 Mar; 396(5):1361-78. PubMed ID: 20080106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural insights into the stability perturbations induced by N-terminal variation in human and goat α-lactalbumin.
    Makabe K; Nakamura T; Kuwajima K
    Protein Eng Des Sel; 2013 Feb; 26(2):165-70. PubMed ID: 23155056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localized nature of the transition-state structure in goat alpha-lactalbumin folding.
    Saeki K; Arai M; Yoda T; Nakao M; Kuwajima K
    J Mol Biol; 2004 Aug; 341(2):589-604. PubMed ID: 15276846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of folding and unfolding of goat alpha-lactalbumin.
    Chedad A; Van Dael H
    Proteins; 2004 Nov; 57(2):345-56. PubMed ID: 15340922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal unfolding simulations of a multimeric protein--transition state and unfolding pathways.
    Duan J; Nilsson L
    Proteins; 2005 May; 59(2):170-82. PubMed ID: 15723359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential four-state folding/unfolding of goat α-lactalbumin and its N-terminal variants.
    Tomoyori K; Nakamura T; Makabe K; Maki K; Saeki K; Kuwajima K
    Proteins; 2012 Aug; 80(9):2191-206. PubMed ID: 22577070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel protein-unfolding pathways revealed and mapped.
    Wright CF; Lindorff-Larsen K; Randles LG; Clarke J
    Nat Struct Biol; 2003 Aug; 10(8):658-62. PubMed ID: 12833152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unfolding transition state and intermediates of the tumor suppressor p16INK4a investigated by molecular dynamics simulations.
    Interlandi G; Settanni G; Caflisch A
    Proteins; 2006 Jul; 64(1):178-92. PubMed ID: 16596641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unfolding of the cold shock protein studied with biased molecular dynamics.
    Morra G; Hodoscek M; Knapp EW
    Proteins; 2003 Nov; 53(3):597-606. PubMed ID: 14579351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the denaturant-induced unfolding of the bovine and human alpha-lactalbumin molten globules.
    Wijesinha-Bettoni R; Dobson CM; Redfield C
    J Mol Biol; 2001 Sep; 312(1):261-73. PubMed ID: 11545601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for difference in heat capacity increments for Ca(2+) binding to two alpha-lactalbumins.
    Vanhooren A; Vanhee K; Noyelle K; Majer Z; Joniau M; Hanssens I
    Biophys J; 2002 Jan; 82(1 Pt 1):407-17. PubMed ID: 11751327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling between hydration layer dynamics and unfolding kinetics of HP-36.
    Bandyopadhyay S; Chakraborty S; Bagchi B
    J Chem Phys; 2006 Aug; 125(8):084912. PubMed ID: 16965062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folding-unfolding of goat alpha-lactalbumin studied by stopped-flow circular dichroism and molecular dynamics simulations.
    Yoda T; Saito M; Arai M; Horii K; Tsumoto K; Matsushima M; Kumagai I; Kuwajima K
    Proteins; 2001 Jan; 42(1):49-65. PubMed ID: 11093260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein instability during HIC: evidence of unfolding reversibility, and apparent adsorption strength of disulfide bond-reduced alpha-lactalbumin variants.
    Deitcher RW; Xiao Y; O'Connell JP; Fernandez EJ
    Biotechnol Bioeng; 2009 Apr; 102(5):1416-27. PubMed ID: 19152385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer simulations of the refolding of sperm whale apomyoglobin from high-temperature denaturated state.
    Dametto M; Cárdenas AE
    J Phys Chem B; 2008 Aug; 112(31):9501-6. PubMed ID: 18616314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retardation of the unfolding process by single N-glycosylation of ribonuclease A based on molecular dynamics simulations.
    Choi Y; Lee JH; Hwang S; Kim JK; Jeong K; Jung S
    Biopolymers; 2008 Feb; 89(2):114-23. PubMed ID: 17937402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.