These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 17611074)

  • 41. Temporal difference models describe higher-order learning in humans.
    Seymour B; O'Doherty JP; Dayan P; Koltzenburg M; Jones AK; Dolan RJ; Friston KJ; Frackowiak RS
    Nature; 2004 Jun; 429(6992):664-7. PubMed ID: 15190354
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Research review: dopamine transfer deficit: a neurobiological theory of altered reinforcement mechanisms in ADHD.
    Tripp G; Wickens JR
    J Child Psychol Psychiatry; 2008 Jul; 49(7):691-704. PubMed ID: 18081766
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A distributional code for value in dopamine-based reinforcement learning.
    Dabney W; Kurth-Nelson Z; Uchida N; Starkweather CK; Hassabis D; Munos R; Botvinick M
    Nature; 2020 Jan; 577(7792):671-675. PubMed ID: 31942076
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Anticipatory responses of dopamine neurons and cortical neurons reproduced by internal model.
    Suri RE
    Exp Brain Res; 2001 Sep; 140(2):234-40. PubMed ID: 11521155
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Discrete coding of reward probability and uncertainty by dopamine neurons.
    Fiorillo CD; Tobler PN; Schultz W
    Science; 2003 Mar; 299(5614):1898-902. PubMed ID: 12649484
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neuroscience. Gambling on dopamine.
    Shizgal P; Arvanitogiannis A
    Science; 2003 Mar; 299(5614):1856-8. PubMed ID: 12649473
    [No Abstract]   [Full Text] [Related]  

  • 47. Prefrontal cortex as a meta-reinforcement learning system.
    Wang JX; Kurth-Nelson Z; Kumaran D; Tirumala D; Soyer H; Leibo JZ; Hassabis D; Botvinick M
    Nat Neurosci; 2018 Jun; 21(6):860-868. PubMed ID: 29760527
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Updating dopamine reward signals.
    Schultz W
    Curr Opin Neurobiol; 2013 Apr; 23(2):229-38. PubMed ID: 23267662
    [TBL] [Abstract][Full Text] [Related]  

  • 49. TD models of reward predictive responses in dopamine neurons.
    Suri RE
    Neural Netw; 2002; 15(4-6):523-33. PubMed ID: 12371509
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reinforcement learning in depression: A review of computational research.
    Chen C; Takahashi T; Nakagawa S; Inoue T; Kusumi I
    Neurosci Biobehav Rev; 2015 Aug; 55():247-67. PubMed ID: 25979140
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficient reinforcement learning: computational theories, neuroscience and robotics.
    Kawato M; Samejima K
    Curr Opin Neurobiol; 2007 Apr; 17(2):205-12. PubMed ID: 17374483
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Model-based predictions for dopamine.
    Langdon AJ; Sharpe MJ; Schoenbaum G; Niv Y
    Curr Opin Neurobiol; 2018 Apr; 49():1-7. PubMed ID: 29096115
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A neural substrate of prediction and reward.
    Schultz W; Dayan P; Montague PR
    Science; 1997 Mar; 275(5306):1593-9. PubMed ID: 9054347
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A computational model of craving and obsession.
    Redish AD; Johnson A
    Ann N Y Acad Sci; 2007 May; 1104():324-39. PubMed ID: 17595292
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adapting the flow of time with dopamine.
    Mikhael JG; Gershman SJ
    J Neurophysiol; 2019 May; 121(5):1748-1760. PubMed ID: 30864882
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computing with populations of monotonically tuned neurons.
    Guigon E
    Neural Comput; 2003 Sep; 15(9):2115-27. PubMed ID: 12959668
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis.
    Glimcher PW
    Proc Natl Acad Sci U S A; 2011 Sep; 108 Suppl 3(Suppl 3):15647-54. PubMed ID: 21389268
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neuroscience. A bite to remember.
    Rankin CH
    Science; 2002 May; 296(5573):1624-5. PubMed ID: 12040169
    [No Abstract]   [Full Text] [Related]  

  • 59. Learning with incomplete information and the mathematical structure behind it.
    Kühn R; Stamatescu IO
    Biol Cybern; 2007 Jul; 97(1):99-112. PubMed ID: 17534648
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Homeostatic reinforcement learning for integrating reward collection and physiological stability.
    Keramati M; Gutkin B
    Elife; 2014 Dec; 3():. PubMed ID: 25457346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.