BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 17611403)

  • 1. Radiation to control transgene expression in tumors.
    Marignol L; Coffey M; Hollywood D; Lawler M
    Cancer Biol Ther; 2007 Jul; 6(7):1005-12. PubMed ID: 17611403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-dose radiation response of the p21WAF1/CIP1 gene promoter transduced by adeno-associated virus vector.
    Nenoi M; Daino K; Ichimura S; Takahash S; Akuta T
    Exp Mol Med; 2006 Oct; 38(5):553-64. PubMed ID: 17079872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resveratrol-Responsive CArG Elements from the Egr-1 Promoter for the Induction of GADD45α to Arrest the G2/M Transition.
    Shi Q; Bhatia D
    Methods Mol Biol; 2019; 1895():111-122. PubMed ID: 30539533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of the radiation-inducible WAF1 promoter to drive iNOS gene therapy as a novel anti-cancer treatment.
    Worthington J; McCarthy HO; Barrett E; Adams C; Robson T; Hirst DG
    J Gene Med; 2004 Jun; 6(6):673-80. PubMed ID: 15170738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of an X-ray-responsive element in the promoter region of tissue-type plasminogen activator: potential uses of X-ray-responsive elements for gene therapy.
    Boothman DA; Lee IW; Sahijdak WM
    Radiat Res; 1994 Apr; 138(1 Suppl):S68-71. PubMed ID: 8146331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel, chimeric, cancer-specific, and radiation-inducible gene promoters for suicide gene therapy of cancer.
    Xiong J; Sun WJ; Wang WF; Liao ZK; Zhou FX; Kong HY; Xu Y; Xie CH; Zhou YF
    Cancer; 2012 Jan; 118(2):536-48. PubMed ID: 21717442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionizing radiation activates transcription of the EGR1 gene via CArG elements.
    Datta R; Rubin E; Sukhatme V; Qureshi S; Hallahan D; Weichselbaum RR; Kufe DW
    Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10149-53. PubMed ID: 1332031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tissue plasminogen activator gene promoter: a novel tool for radiogenic gene therapy of the prostate?
    Marignol L; Robson T; McCarthy HO; Worthington J; Murray MM; Hollywood D; Lawler M; Hirst DG
    J Gene Med; 2008 Sep; 10(9):1032-8. PubMed ID: 18615772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiogenic therapy: novel approaches for enhancing tumor radiosensitivity.
    Robson T; Worthington J; McKeown SR; Hirst DG
    Technol Cancer Res Treat; 2005 Aug; 4(4):343-61. PubMed ID: 16029055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential binding of cAMP-responsive-element (CRE)-binding protein-1 and activating transcription factor-2 to a CRE-like element in the human tissue-type plasminogen activator (t-PA) gene promoter correlates with opposite regulation of t-PA by phorbol ester in HT-1080 and HeLa cells.
    Costa M; Medcalf RL
    Eur J Biochem; 1996 May; 237(3):532-8. PubMed ID: 8647095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive oxygen intermediates target CC(A/T)6GG sequences to mediate activation of the early growth response 1 transcription factor gene by ionizing radiation.
    Datta R; Taneja N; Sukhatme VP; Qureshi SA; Weichselbaum R; Kufe DW
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2419-22. PubMed ID: 8384722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of smooth muscle alpha-actin expression in vivo is dependent on CArG elements within the 5' and first intron promoter regions.
    Mack CP; Owens GK
    Circ Res; 1999 Apr; 84(7):852-61. PubMed ID: 10205154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gamma irradiation and targeted radionuclides enhance the expression of the noradrenaline transporter transgene controlled by the radio-inducible p21(WAF1/CIP1) promoter.
    McCluskey AG; Mairs RJ; Sorensen A; Robson T; McCarthy HO; Pimlott SL; Babich JW; Champion S; Boyd M
    Radiat Res; 2013 Mar; 179(3):282-92. PubMed ID: 23336184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionizing radiation: a genetic switch for cancer therapy.
    Mezhir JJ; Smith KD; Posner MC; Senzer N; Yamini B; Kufe DW; Weichselbaum RR
    Cancer Gene Ther; 2006 Jan; 13(1):1-6. PubMed ID: 16082378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperinducibility of hypoxia-responsive genes without p53/p21-dependent checkpoint in aggressive prostate cancer.
    Salnikow K; Costa M; Figg WD; Blagosklonny MV
    Cancer Res; 2000 Oct; 60(20):5630-4. PubMed ID: 11059752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia- and radiation-activated Cre/loxP 'molecular switch' vectors for gene therapy of cancer.
    Greco O; Joiner MC; Doleh A; Powell AD; Hillman GG; Scott SD
    Gene Ther; 2006 Feb; 13(3):206-15. PubMed ID: 16307003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. p21((WAF1))-mediated transcriptional targeting of inducible nitric oxide synthase gene therapy sensitizes tumours to fractionated radiotherapy.
    McCarthy HO; Worthington J; Barrett E; Cosimo E; Boyd M; Mairs RJ; Ward C; McKeown SR; Hirst DG; Robson T
    Gene Ther; 2007 Feb; 14(3):246-55. PubMed ID: 17006546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing radiation-responsive gene promoters for radiogenetic cancer therapy.
    Scott SD; Joiner MC; Marples B
    Gene Ther; 2002 Oct; 9(20):1396-402. PubMed ID: 12365005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular approaches to chemo-radiotherapy.
    Marples B; Greco O; Joiner MC; Scott SD
    Eur J Cancer; 2002 Jan; 38(2):231-9. PubMed ID: 11803140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How to overcome (and exploit) tumor hypoxia for targeted gene therapy.
    Greco O; Marples B; Joiner MC; Scott SD
    J Cell Physiol; 2003 Dec; 197(3):312-25. PubMed ID: 14566961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.