These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
403 related articles for article (PubMed ID: 17611753)
21. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. Kim PI; Bai H; Bai D; Chae H; Chung S; Kim Y; Park R; Chi YT J Appl Microbiol; 2004; 97(5):942-9. PubMed ID: 15479409 [TBL] [Abstract][Full Text] [Related]
22. Modeling production of antifungal compounds and their role in biocontrol product inhibitory activity. Pryor SW; Siebert KJ; Gibson DM; Gossett JM; Walker LP J Agric Food Chem; 2007 Nov; 55(23):9530-6. PubMed ID: 17949051 [TBL] [Abstract][Full Text] [Related]
23. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Romero D; de Vicente A; Rakotoaly RH; Dufour SE; Veening JW; Arrebola E; Cazorla FM; Kuipers OP; Paquot M; Pérez-García A Mol Plant Microbe Interact; 2007 Apr; 20(4):430-40. PubMed ID: 17427813 [TBL] [Abstract][Full Text] [Related]
24. Identification of novel surfactin derivatives from NRPS modification of Bacillus subtilis and its antifungal activity against Fusarium moniliforme. Jiang J; Gao L; Bie X; Lu Z; Liu H; Zhang C; Lu F; Zhao H BMC Microbiol; 2016 Mar; 16():31. PubMed ID: 26957318 [TBL] [Abstract][Full Text] [Related]
25. Fengycins, Cyclic Lipopeptides from Marine Bacillus subtilis Strains, Kill the Plant-Pathogenic Fungus Magnaporthe grisea by Inducing Reactive Oxygen Species Production and Chromatin Condensation. Zhang L; Sun C Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980550 [TBL] [Abstract][Full Text] [Related]
26. Application of electrospray ionization mass spectrometry in rapid typing of fengycin homologues produced by Bacillus subtilis. Wang J; Liu J; Wang X; Yao J; Yu Z Lett Appl Microbiol; 2004; 39(1):98-102. PubMed ID: 15189295 [TBL] [Abstract][Full Text] [Related]
27. [Purification and properties of antifungal protein X98III from Bacillus subtilis]. Xie D; Peng J; Wang J; Hu J; Wang Y Wei Sheng Wu Xue Bao; 1998 Feb; 38(1):13-9. PubMed ID: 12549383 [TBL] [Abstract][Full Text] [Related]
28. Molecular and biochemical detection of fengycin- and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Ramarathnam R; Bo S; Chen Y; Fernando WG; Xuewen G; de Kievit T Can J Microbiol; 2007 Jul; 53(7):901-11. PubMed ID: 17898845 [TBL] [Abstract][Full Text] [Related]
29. Purification of antifungal lipopeptides by reversed-phase high-performance liquid chromatography. Razafindralambo H; Paquot M; Hbid C; Jacques P; Destain J; Thonart P J Chromatogr; 1993 Jun; 639(1):81-5. PubMed ID: 8331146 [TBL] [Abstract][Full Text] [Related]
30. Antifungal efficiency of a lipopeptide biosurfactant derived from Bacillus subtilis SPB1 versus the phytopathogenic fungus, Fusarium solani. Mnif I; Hammami I; Triki MA; Azabou MC; Ellouze-Chaabouni S; Ghribi D Environ Sci Pollut Res Int; 2015 Nov; 22(22):18137-47. PubMed ID: 26178831 [TBL] [Abstract][Full Text] [Related]
31. [Isolation and identification of lipopeptides produced by Bacillus subtilis using high performance liquid chromatography and electrospray ionization mass spectrometry]. Chen H; Wang L; Yuan C; Zheng Z; Yu Z Se Pu; 2008 May; 26(3):343-7. PubMed ID: 18724673 [TBL] [Abstract][Full Text] [Related]
32. Cyclic lipopeptide profile of three Bacillus subtilis strains; antagonists of Fusarium head blight. Dunlap CA; Schisler DA; Price NP; Vaughn SF J Microbiol; 2011 Aug; 49(4):603-9. PubMed ID: 21887643 [TBL] [Abstract][Full Text] [Related]
33. Antifungal potential of lipopeptides produced by the Hussain S; Tai B; Ali M; Jahan I; Sakina S; Wang G; Zhang X; Yin Y; Xing F Microbiol Spectr; 2024 Apr; 12(4):e0400823. PubMed ID: 38451229 [TBL] [Abstract][Full Text] [Related]
34. Complete genome sequence of Bacillus subtilis SG6 antagonistic against Fusarium graminearum. Zhao Y; Sangare L; Wang Y; Folly YM; Selvaraj JN; Xing F; Zhou L; Wang Y; Liu Y J Biotechnol; 2015 Jan; 194():10-1. PubMed ID: 25483317 [TBL] [Abstract][Full Text] [Related]
35. Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae. Zhao P; Quan C; Wang Y; Wang J; Fan S J Basic Microbiol; 2014 May; 54(5):448-56. PubMed ID: 23553741 [TBL] [Abstract][Full Text] [Related]
36. A Novel Variant of Narrow-Spectrum Antifungal Bacterial Lipopeptides That Strongly Inhibit Ganoderma boninense. Pramudito TE; Agustina D; Nguyen TKN; Suwanto A Probiotics Antimicrob Proteins; 2018 Mar; 10(1):110-117. PubMed ID: 29101528 [TBL] [Abstract][Full Text] [Related]
37. Evaluation of antagonistic activities of Bacillus subtilis and Bacillus licheniformis against wood-staining fungi: in vitro and in vivo experiments. Velmurugan N; Choi MS; Han SS; Lee YS J Microbiol; 2009 Aug; 47(4):385-92. PubMed ID: 19763411 [TBL] [Abstract][Full Text] [Related]
38. Characterization of an antifungal soil bacterium and its antagonistic activities against Fusarium species. Chan YK; McCormick WA; Seifert KA Can J Microbiol; 2003 Apr; 49(4):253-62. PubMed ID: 12897834 [TBL] [Abstract][Full Text] [Related]
39. Antifungal Lipopeptides Produced by Bacillus sp. FJAT-14262 Isolated from Rhizosphere Soil of the Medicinal Plant Anoectochilus roxburghii. Chen Q; Liu B; Wang J; Che J; Liu G; Guan X Appl Biochem Biotechnol; 2017 May; 182(1):155-167. PubMed ID: 27854037 [TBL] [Abstract][Full Text] [Related]
40. Hassallidin A, a glycosylated lipopeptide with antifungal activity from the cyanobacterium Hassallia sp. Neuhof T; Schmieder P; Preussel K; Dieckmann R; Pham H; Bartl F; von Döhren H J Nat Prod; 2005 May; 68(5):695-700. PubMed ID: 15921412 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]