These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 17611806)

  • 21. Performance of host-races of the fruit fly, Tephritis conura on a derived host plant, the cabbage thistle Cirsium oleraceum: implications for the original host shift.
    Diegisser T; Johannesen J; Seitz A
    J Insect Sci; 2008; 8():1-6. PubMed ID: 20302521
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mowing strategies for controlling Cirsium arvense in a permanent pasture in New Zealand compared using a matrix model.
    Bourdôt GW; Basse B; Cripps MG
    Ecol Evol; 2016 May; 6(9):2968-77. PubMed ID: 27069591
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in nutrient content of Cirsium arvense (L.) Scop. during the vegetation period.
    Lehoczky E; Nádasy E; Béres I; Kazinczi G
    Commun Agric Appl Biol Sci; 2003; 68(4 Pt A):449-53. PubMed ID: 15149143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The relative importance of resources and natural enemies in determining herbivore abundance: thistles, tephritids and parasitoids.
    Walker M; Hartley SE; Jones TH
    J Anim Ecol; 2008 Sep; 77(5):1063-71. PubMed ID: 18507695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of Cirsium arvense extract on antioxidant status in quail.
    Orhan C; Sahin N; Akdemir F; Markiewicz-Zukowska R; Borawska MH; Isidorov VA; Hayirli A; Sahin K
    Br Poult Sci; 2013; 54(5):620-6. PubMed ID: 23957289
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial prediction of habitat overlap of introduced and native thistles to identify potential areas of nontarget activity of biological control agents.
    Wiggins GJ; Grant JF; Lambdin PL; Ranney JW; Wilkerson JB; van Manen FT
    Environ Entomol; 2010 Dec; 39(6):1866-77. PubMed ID: 22182552
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cryptic diversity in host-associated populations of Tetra pinnatifidae (Acari: Eriophyoidea): what do morphometric, mitochondrial and nuclear data reveal and conceal?
    Li HS; Xue XF; Hong XY
    Bull Entomol Res; 2014 Apr; 104(2):221-32. PubMed ID: 24401188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Floral scent of Canada thistle and its potential as a generic insect attractant.
    El-Sayed AM; Byers JA; Manning LM; Jürgens A; Mitchell VJ; Suckling DM
    J Econ Entomol; 2008 Jun; 101(3):720-7. PubMed ID: 18613571
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phylogeny of Cirsium spp. in North America: Host Specificity Does Not Follow Phylogeny.
    Slotta TA; Horvath DP; Foley ME
    Plants (Basel); 2012 Oct; 1(2):61-73. PubMed ID: 27137640
    [TBL] [Abstract][Full Text] [Related]  

  • 30. First Report of
    Cao XL; Zhao SF; Yao ZQ; Dong X; Zhang L; Zhao QY
    Plant Dis; 2022 Apr; ():PDIS04210773PDN. PubMed ID: 34798789
    [No Abstract]   [Full Text] [Related]  

  • 31. Indirect interaction between two native thistles mediated by an invasive exotic floral herbivore.
    Russell FL; Louda SM
    Oecologia; 2005 Dec; 146(3):373-84. PubMed ID: 16086168
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Eriophyoid mites (Acari: Prostigmata: Eriophyoidea) from Hungary: a new species on Agrimonia eupatoria (Rosaceae) and new record on Convolvulus arvensis (Convolvulaceae).
    Ripka G
    Zootaxa; 2014 Dec; 3900(2):263-70. PubMed ID: 25543737
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Does local isolation allow an invasive thistle to escape enemy pressure?
    Nunes KA; Kotanen PM
    Oecologia; 2018 Sep; 188(1):139-147. PubMed ID: 29869020
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of rising atmospheric CO2 since 1900 on early growth and photosynthetic response of a noxious invasive weed, Canada thistle (Cirsium arvense).
    Ziska LH
    Funct Plant Biol; 2002 Jan; 29(12):1387-1392. PubMed ID: 32688738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three eriophyoid mite species (Acari: Eriophyoidea: Eriophyidae) from Iran.
    Xue XF; Sadeghi H; Honarmand A
    Zootaxa; 2016 Jun; 4132(3):403-12. PubMed ID: 27395681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Invasive insect abundance varies across the biogeographic distribution of a native host plant.
    Rand TA; Louda SM
    Ecol Appl; 2006 Jun; 16(3):877-90. PubMed ID: 16826988
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new species of eriophyoid mite (Acari: Eriophyoidea) on Rosa sp. from Israel.
    Druciarek T; Lewandowski M
    Zootaxa; 2016 Jan; 4066(3):323-30. PubMed ID: 27395555
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stagonolides G-I and modiolide A, nonenolides produced by Stagonospora cirsii, a potential mycoherbicide for Cirsium arvense.
    Evidente A; Cimmino A; Berestetskiy A; Andolfi A; Motta A
    J Nat Prod; 2008 Nov; 71(11):1897-901. PubMed ID: 18959441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An epidemiological study of Puccinia punctiformis (Str.) Röhl as a stepping-stone to the biological control of Cirsium arvense (L.) Scop.
    Frantzen J
    New Phytol; 1994 May; 127(1):147-154. PubMed ID: 33874395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Indirect interaction between a fungal plant pathogen and a herbivorous beetle of the weed Cirsium arvense.
    Kruess A
    Oecologia; 2002 Feb; 130(4):563-569. PubMed ID: 28547258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.