These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 1761196)
1. The effect of cyanide on vitamin C uptake by human polymorphonuclear leukocytes. Stankova L; Bigley R; Ingermann RL Gen Pharmacol; 1991; 22(5):903-5. PubMed ID: 1761196 [TBL] [Abstract][Full Text] [Related]
2. Recycling of vitamin C by a bystander effect. Nualart FJ; Rivas CI; Montecinos VP; Godoy AS; Guaiquil VH; Golde DW; Vera JC J Biol Chem; 2003 Mar; 278(12):10128-33. PubMed ID: 12435736 [TBL] [Abstract][Full Text] [Related]
3. Colony-stimulating factors signal for increased transport of vitamin C in human host defense cells. Vera JC; Rivas CI; Zhang RH; Golde DW Blood; 1998 Apr; 91(7):2536-46. PubMed ID: 9516155 [TBL] [Abstract][Full Text] [Related]
4. Vitamin C metabolomic mapping in the lens with 6-deoxy-6-fluoro-ascorbic acid and high-resolution 19F-NMR spectroscopy. Satake M; Dmochowska B; Nishikawa Y; Madaj J; Xue J; Guo Z; Reddy DV; Rinaldi PL; Monnier VM Invest Ophthalmol Vis Sci; 2003 May; 44(5):2047-58. PubMed ID: 12714643 [TBL] [Abstract][Full Text] [Related]
5. Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid. Vera JC; Rivas CI; Zhang RH; Farber CM; Golde DW Blood; 1994 Sep; 84(5):1628-34. PubMed ID: 8068952 [TBL] [Abstract][Full Text] [Related]
6. Interaction between glucose and dehydroascorbate transport in human neutrophils and fibroblasts. Bigley R; Wirth M; Layman D; Riddle M; Stankova L Diabetes; 1983 Jun; 32(6):545-8. PubMed ID: 6354783 [TBL] [Abstract][Full Text] [Related]
7. The transport of vitamin C in the isolated human near-term placenta. Rybakowski C; Mohar B; Wohlers S; Leichtweiss HP; Schröder H Eur J Obstet Gynecol Reprod Biol; 1995 Sep; 62(1):107-14. PubMed ID: 7493690 [TBL] [Abstract][Full Text] [Related]
8. Human choroid plexus papilloma cells efficiently transport glucose and vitamin C. Ulloa V; García-Robles M; Martínez F; Salazar K; Reinicke K; Pérez F; Godoy DF; Godoy AS; Nualart F J Neurochem; 2013 Nov; 127(3):403-14. PubMed ID: 23647458 [TBL] [Abstract][Full Text] [Related]
9. Two distinct uptake mechanisms for ascorbate and dehydroascorbate in human lymphoblasts and their interaction with glucose. Ngkeekwong FC; Ng LL Biochem J; 1997 May; 324 ( Pt 1)(Pt 1):225-30. PubMed ID: 9164860 [TBL] [Abstract][Full Text] [Related]
10. Studies with low micromolar levels of ascorbic and dehydroascorbic acid fail to unravel a preferential route for vitamin C uptake and accumulation in U937 cells. Azzolini C; Fiorani M; Guidarelli A; Cantoni O Br J Nutr; 2012 Mar; 107(5):691-6. PubMed ID: 21794197 [TBL] [Abstract][Full Text] [Related]
11. Role of monosaccharide transporter in vitamin C uptake by placental membrane vesicles. Ingermann RL; Stankova L; Bigley RH Am J Physiol; 1986 Apr; 250(4 Pt 1):C637-41. PubMed ID: 3963175 [TBL] [Abstract][Full Text] [Related]
12. Cerebral astrocytes transport ascorbic acid and dehydroascorbic acid through distinct mechanisms regulated by cyclic AMP. Siushansian R; Tao L; Dixon SJ; Wilson JX J Neurochem; 1997 Jun; 68(6):2378-85. PubMed ID: 9166731 [TBL] [Abstract][Full Text] [Related]
13. Distinct mechanisms of transport of ascorbic acid and dehydroascorbic acid in intestinal epithelial cells (IEC-6). Fujita I; Akagi Y; Hirano J; Nakanishi T; Itoh N; Muto N; Tanaka K Res Commun Mol Pathol Pharmacol; 2000; 107(3-4):219-31. PubMed ID: 11484876 [TBL] [Abstract][Full Text] [Related]
14. Requirement for GSH in recycling of ascorbic acid in endothelial cells. May JM; Qu Z; Li X Biochem Pharmacol; 2001 Oct; 62(7):873-81. PubMed ID: 11543722 [TBL] [Abstract][Full Text] [Related]
15. Vitamin C transport in oxidized form across the rat blood-retinal barrier. Hosoya K; Minamizono A; Katayama K; Terasaki T; Tomi M Invest Ophthalmol Vis Sci; 2004 Apr; 45(4):1232-9. PubMed ID: 15037592 [TBL] [Abstract][Full Text] [Related]
16. Glutathione-dependent dehydroascorbate reduction: a determinant of dehydroascorbate uptake by human polymorphonuclear leukocytes. Bigley R; Stankova L; Roos D; Loos J Enzyme; 1980; 25(3):200-4. PubMed ID: 7398612 [TBL] [Abstract][Full Text] [Related]
17. Quercetin prevents glutathione depletion induced by dehydroascorbic acid in rabbit red blood cells. Fiorani M; De Sanctis R; Menghinello P; Cucchiarini L; Cellini B; Dachà M Free Radic Res; 2001 Jun; 34(6):639-48. PubMed ID: 11697039 [TBL] [Abstract][Full Text] [Related]
18. Dehydroascorbic acid uptake in a human keratinocyte cell line (HaCaT) is glutathione-independent. Savini I; Duflot S; Avigliano L Biochem J; 2000 Feb; 345 Pt 3(Pt 3):665-72. PubMed ID: 10642526 [TBL] [Abstract][Full Text] [Related]
19. A novel biological role of dehydroascorbic acid: Inhibition of Na(+)-dependent transport of ascorbic acid. Fiorani M; Azzolini C; Guidarelli A; Cerioni L; Cantoni O Pharmacol Res; 2014 Jun; 84():12-7. PubMed ID: 24769194 [TBL] [Abstract][Full Text] [Related]
20. The oxidized form of vitamin C, dehydroascorbic acid, regulates neuronal energy metabolism. Cisternas P; Silva-Alvarez C; Martínez F; Fernandez E; Ferrada L; Oyarce K; Salazar K; Bolaños JP; Nualart F J Neurochem; 2014 May; 129(4):663-71. PubMed ID: 24460956 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]