These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Cold season emissions dominate the Arctic tundra methane budget. Zona D; Gioli B; Commane R; Lindaas J; Wofsy SC; Miller CE; Dinardo SJ; Dengel S; Sweeney C; Karion A; Chang RY; Henderson JM; Murphy PC; Goodrich JP; Moreaux V; Liljedahl A; Watts JD; Kimball JS; Lipson DA; Oechel WC Proc Natl Acad Sci U S A; 2016 Jan; 113(1):40-5. PubMed ID: 26699476 [TBL] [Abstract][Full Text] [Related]
7. Large emissions from floodplain trees close the Amazon methane budget. Pangala SR; Enrich-Prast A; Basso LS; Peixoto RB; Bastviken D; Hornibrook ERC; Gatti LV; Marotta H; Calazans LSB; Sakuragui CM; Bastos WR; Malm O; Gloor E; Miller JB; Gauci V Nature; 2017 Dec; 552(7684):230-234. PubMed ID: 29211724 [TBL] [Abstract][Full Text] [Related]
8. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Bridgham SD; Cadillo-Quiroz H; Keller JK; Zhuang Q Glob Chang Biol; 2013 May; 19(5):1325-46. PubMed ID: 23505021 [TBL] [Abstract][Full Text] [Related]
9. Methane budget of East Asia, 1990-2015: A bottom-up evaluation. Ito A; Tohjima Y; Saito T; Umezawa T; Hajima T; Hirata R; Saito M; Terao Y Sci Total Environ; 2019 Aug; 676():40-52. PubMed ID: 31029899 [TBL] [Abstract][Full Text] [Related]
10. Methane emissions from rice paddies natural wetlands, and lakes in China: synthesis and new estimate. Chen H; Zhu Q; Peng C; Wu N; Wang Y; Fang X; Jiang H; Xiang W; Chang J; Deng X; Yu G Glob Chang Biol; 2013 Jan; 19(1):19-32. PubMed ID: 23504718 [TBL] [Abstract][Full Text] [Related]
11. Satellite data based estimation of methane emissions from rice paddies in the Sanjiang Plain in northeast China. Sun M; Zhang Y; Ma J; Yuan W; Li X; Cheng X PLoS One; 2017; 12(6):e0176765. PubMed ID: 28586357 [TBL] [Abstract][Full Text] [Related]
12. Reduced biomass burning emissions reconcile conflicting estimates of the post-2006 atmospheric methane budget. Worden JR; Bloom AA; Pandey S; Jiang Z; Worden HM; Walker TW; Houweling S; Röckmann T Nat Commun; 2017 Dec; 8(1):2227. PubMed ID: 29263323 [TBL] [Abstract][Full Text] [Related]
13. Atmospheric methane isotopic record favors fossil sources flat in 1980s and 1990s with recent increase. Rice AL; Butenhoff CL; Teama DG; Röger FH; Khalil MA; Rasmussen RA Proc Natl Acad Sci U S A; 2016 Sep; 113(39):10791-6. PubMed ID: 27621453 [TBL] [Abstract][Full Text] [Related]
14. The influence of plants on atmospheric methane in an agriculture-dominated landscape. Zhang X; Lee X; Griffis TJ; Baker JM; Erickson MD; Hu N; Xiao W Int J Biometeorol; 2014 Jul; 58(5):819-33. PubMed ID: 23612798 [TBL] [Abstract][Full Text] [Related]
15. Aerobic methane emission from plants in the Inner Mongolia steppe. Wang ZP; Han XG; Wang GG; Song Y; Gulledge J Environ Sci Technol; 2008 Jan; 42(1):62-8. PubMed ID: 18350876 [TBL] [Abstract][Full Text] [Related]
16. Geologic emissions of methane to the atmosphere. Etiope G; Klusman RW Chemosphere; 2002 Dec; 49(8):777-89. PubMed ID: 12430657 [TBL] [Abstract][Full Text] [Related]
17. Development of a low-maintenance measurement approach to continuously estimate methane emissions: A case study. Riddick SN; Hancock BR; Robinson AD; Connors S; Davies S; Allen G; Pitt J; Harris NRP Waste Manag; 2018 Mar; 73():210-219. PubMed ID: 28003116 [TBL] [Abstract][Full Text] [Related]
18. Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Bloom AA; Palmer PI; Fraser A; Reay DS; Frankenberg C Science; 2010 Jan; 327(5963):322-5. PubMed ID: 20075250 [TBL] [Abstract][Full Text] [Related]