BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 17612198)

  • 21. The role of Cu(II) in the reduction of N-nitrosodimethylamine with iron and zinc.
    Han Y; Chen ZL; Shen JM; Wang JH; Li WW; Li J; Wang BY; Tong LN
    Chemosphere; 2017 Jan; 167():171-177. PubMed ID: 27718429
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biochar-derived organic carbon promoting the dehydrochlorination of 1,1,2,2-tetrachloroethane and its molecular size effects: Synergies of dipole-dipole and conjugate bases.
    Chen W; Yu S; Zhang H; Wei R; Ni J; Farooq U; Qi Z
    Water Res; 2024 Aug; 259():121812. PubMed ID: 38810344
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of various organic molecules on the reduction of hexavalent chromium mediated by zero-valent iron.
    Rivero-Huguet M; Marshall WD
    Chemosphere; 2009 Aug; 76(9):1240-8. PubMed ID: 19559460
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of dechlorination kinetics of chlorinated aliphatic hydrocarbons by Fe(II) in cement slurries.
    Jung B; Batchelor B
    J Hazard Mater; 2008 Mar; 152(1):62-70. PubMed ID: 17707584
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effective dechlorination of HCB by nanoscale Cu/Fe particles.
    Zhu N; Luan H; Yuan S; Chen J; Wu X; Wang L
    J Hazard Mater; 2010 Apr; 176(1-3):1101-5. PubMed ID: 19969417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Treating Cr(VI)-containing wastewater by a consortium of sulfate reducing bacteria and copper-iron bimetallic particles].
    He QZ; Chen H; Wang D; Li H; Ding XH; Deng L
    Huan Jing Ke Xue; 2011 Jul; 32(7):2000-5. PubMed ID: 21922821
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbon isotope fractionation of 1,1,1-trichloroethane during base-catalyzed persulfate treatment.
    Marchesi M; Thomson NR; Aravena R; Sra KS; Otero N; Soler A
    J Hazard Mater; 2013 Sep; 260():61-6. PubMed ID: 23747463
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of trichloroethylene using iron, bimetals and trimetals.
    Chao KP; Ong SK; Fryzek T; Yuan W; Braida W
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(11):1536-42. PubMed ID: 22702813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal of hexavalent chromium from aqueous solution by iron nanoparticles.
    Niu SF; Liu Y; Xu XH; Lou ZH
    J Zhejiang Univ Sci B; 2005 Oct; 6(10):1022-7. PubMed ID: 16187417
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chlorinated solvent transformation by palladized zerovalent iron: mechanistic insights from reductant loading studies and solvent kinetic isotope effects.
    Xie Y; Cwiertny DM
    Environ Sci Technol; 2013 Jul; 47(14):7940-8. PubMed ID: 23755912
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of carbon sources on the removal of 1,1,2-trichloroethane and 1,1,2,2-tetrachloroethane in UASB reactor.
    Basu D; Asolekar SR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(4):638-44. PubMed ID: 22375547
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Different effects of surface heterogeneous atoms of porous and non-porous carbonaceous materials on adsorption of 1,1,2,2-tetrachloroethane in aqueous environment.
    Chen W; Ni J
    Chemosphere; 2017 May; 175():323-331. PubMed ID: 28235741
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous photocatalytic reduction of Cr(VI) and oxidation of bisphenol A induced by Fe(III)-OH complexes in water.
    Liu Y; Deng L; Chen Y; Wu F; Deng N
    J Hazard Mater; 2007 Jan; 139(2):399-402. PubMed ID: 16844289
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduction of polychlorinated ethanes and carbon tetrachloride by structural Fe(II) in smectites.
    Neumann A; Hofstetter TB; Skarpeli-Liati M; Schwarzenbach RP
    Environ Sci Technol; 2009 Jun; 43(11):4082-9. PubMed ID: 19569334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contrasting dual (C, Cl) isotope fractionation offers potential to distinguish reductive chloroethene transformation from breakdown by permanganate.
    Doğan-Subaşı E; Elsner M; Qiu S; Cretnik S; Atashgahi S; Shouakar-Stash O; Boon N; Dejonghe W; Bastiaens L
    Sci Total Environ; 2017 Oct; 596-597():169-177. PubMed ID: 28431360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Incorporation of zero valent iron nanoparticles in the matrix of cationic resin beads for the remediation of Cr(VI) contaminated waters.
    Toli A; Chalastara K; Mystrioti C; Xenidis A; Papassiopi N
    Environ Pollut; 2016 Jul; 214():419-429. PubMed ID: 27108046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influences of humic acid, bicarbonate and calcium on Cr(VI) reductive removal by zero-valent iron.
    Liu T; Rao P; Lo IM
    Sci Total Environ; 2009 May; 407(10):3407-14. PubMed ID: 19232679
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones.
    He F; Zhao D; Paul C
    Water Res; 2010 Apr; 44(7):2360-70. PubMed ID: 20106501
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isotope fractionation and spectroscopic analysis as an evidence of Cr(VI) reduction during biosorption.
    Šillerová H; Chrastný V; Čadková E; Komárek M
    Chemosphere; 2014 Jan; 95():402-7. PubMed ID: 24139156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous removal of Cu(II) and Cr(VI) by Mg-Al-Cl layered double hydroxide and mechanism insight.
    Yue X; Liu W; Chen Z; Lin Z
    J Environ Sci (China); 2017 Mar; 53():16-26. PubMed ID: 28372740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.