BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 17612289)

  • 1. Spectral networks: a new approach to de novo discovery of protein sequences and posttranslational modifications.
    Bandeira N
    Biotechniques; 2007 Jun; 42(6):687, 689, 691 passim. PubMed ID: 17612289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The spectral networks paradigm in high throughput mass spectrometry.
    Guthals A; Watrous JD; Dorrestein PC; Bandeira N
    Mol Biosyst; 2012 Oct; 8(10):2535-44. PubMed ID: 22610447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein identification by spectral networks analysis.
    Bandeira N
    Methods Mol Biol; 2011; 694():151-68. PubMed ID: 21082434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-throughput de novo sequencing approach for shotgun proteomics using high-resolution tandem mass spectrometry.
    Pan C; Park BH; McDonald WH; Carey PA; Banfield JF; VerBerkmoes NC; Hettich RL; Samatova NF
    BMC Bioinformatics; 2010 Mar; 11():118. PubMed ID: 20205730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pNovo+: de novo peptide sequencing using complementary HCD and ETD tandem mass spectra.
    Chi H; Chen H; He K; Wu L; Yang B; Sun RX; Liu J; Zeng WF; Song CQ; He SM; Dong MQ
    J Proteome Res; 2013 Feb; 12(2):615-25. PubMed ID: 23272783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput identification of proteins and unanticipated sequence modifications using a mass-based alignment algorithm for MS/MS de novo sequencing results.
    Searle BC; Dasari S; Turner M; Reddy AP; Choi D; Wilmarth PA; McCormack AL; David LL; Nagalla SR
    Anal Chem; 2004 Apr; 76(8):2220-30. PubMed ID: 15080731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein identification by spectral networks analysis.
    Bandeira N; Tsur D; Frank A; Pevzner PA
    Proc Natl Acad Sci U S A; 2007 Apr; 104(15):6140-5. PubMed ID: 17404225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A suffix tree approach to the interpretation of tandem mass spectra: applications to peptides of non-specific digestion and post-translational modifications.
    Lu B; Chen T
    Bioinformatics; 2003 Oct; 19 Suppl 2():ii113-21. PubMed ID: 14534180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo protein sequencing by combining top-down and bottom-up tandem mass spectra.
    Liu X; Dekker LJ; Wu S; Vanduijn MM; Luider TM; Tolić N; Kou Q; Dvorkin M; Alexandrova S; Vyatkina K; Paša-Tolić L; Pevzner PA
    J Proteome Res; 2014 Jul; 13(7):3241-8. PubMed ID: 24874765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Algorithms for the de novo sequencing of peptides from tandem mass spectra.
    Allmer J
    Expert Rev Proteomics; 2011 Oct; 8(5):645-57. PubMed ID: 21999834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast de novo peptide sequencing and spectral alignment via tree decomposition.
    Liu C; Song Y; Yan B; Xu Y; Cai L
    Pac Symp Biocomput; 2006; ():255-66. PubMed ID: 17094244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo sequencing of unique sequence tags for discovery of post-translational modifications of proteins.
    Shen Y; Tolić N; Hixson KK; Purvine SO; Anderson GA; Smith RD
    Anal Chem; 2008 Oct; 80(20):7742-54. PubMed ID: 18783246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins.
    Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON
    J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein identification from tandem mass spectra by database searching.
    Edwards NJ
    Methods Mol Biol; 2011; 694():119-38. PubMed ID: 21082432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shotgun protein sequencing: assembly of peptide tandem mass spectra from mixtures of modified proteins.
    Bandeira N; Clauser KR; Pevzner PA
    Mol Cell Proteomics; 2007 Jul; 6(7):1123-34. PubMed ID: 17446555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2018 YPIC Challenge: A Case Study in Characterizing an Unknown Protein Sample.
    Pino L; Lin A; Bittremieux W
    J Proteome Res; 2019 Nov; 18(11):3936-3943. PubMed ID: 31556620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry for peptide de novo amino acid sequencing for a seven-protein mixture by paired single-residue transposed Lys-N and Lys-C digestion.
    Guan X; Brownstein NC; Young NL; Marshall AG
    Rapid Commun Mass Spectrom; 2017 Jan; 31(2):207-217. PubMed ID: 27813191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How much peptide sequence information is contained in ion trap tandem mass spectra?
    Cox J; Hubner NC; Mann M
    J Am Soc Mass Spectrom; 2008 Dec; 19(12):1813-20. PubMed ID: 18757209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral clustering in peptidomics studies allows homology searching and modification profiling: HomClus, a versatile tool.
    Menschaert G; Hayakawa E; Schoofs L; Van Criekinge W; Baggerman G
    J Proteome Res; 2012 May; 11(5):2774-85. PubMed ID: 22409323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-translational modifications of Desulfovibrio vulgaris Hildenborough sulfate reduction pathway proteins.
    Gaucher SP; Redding AM; Mukhopadhyay A; Keasling JD; Singh AK
    J Proteome Res; 2008 Jun; 7(6):2320-31. PubMed ID: 18416566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.