These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 17612557)

  • 1. Structural metals in the group I intron: a ribozyme with a multiple metal ion core.
    Stahley MR; Adams PL; Wang J; Strobel SA
    J Mol Biol; 2007 Sep; 372(1):89-102. PubMed ID: 17612557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaving group stabilization by metal ion coordination and hydrogen bond donation is an evolutionarily conserved feature of group I introns.
    Kuo LY; Piccirilli JA
    Biochim Biophys Acta; 2001 Dec; 1522(3):158-66. PubMed ID: 11779630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
    Strauss-Soukup JK; Strobel SA
    J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-binding sites in the major groove of a large ribozyme domain.
    Cate JH; Doudna JA
    Structure; 1996 Oct; 4(10):1221-9. PubMed ID: 8939748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of a self-splicing group I intron with both exons.
    Adams PL; Stahley MR; Kosek AB; Wang J; Strobel SA
    Nature; 2004 Jul; 430(6995):45-50. PubMed ID: 15175762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal ion binding sites in a group II intron core.
    Sigel RK; Vaidya A; Pyle AM
    Nat Struct Biol; 2000 Dec; 7(12):1111-6. PubMed ID: 11101891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of core helices and rapid tertiary folding of a small bacterial group I ribozyme.
    Rangan P; Masquida B; Westhof E; Woodson SA
    Proc Natl Acad Sci U S A; 2003 Feb; 100(4):1574-9. PubMed ID: 12574513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-function relationships of two closely related group IC3 intron ribozymes from Azoarcus and Synechococcus pre-tRNA.
    Ikawa Y; Naito D; Shiraishi H; Inoue T
    Nucleic Acids Res; 2000 Sep; 28(17):3269-77. PubMed ID: 10954594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific phosphorothioate substitution within domain 6 of a group II intron ribozyme leads to changes in local structure and metal ion binding.
    Erat MC; Besic E; Oberhuber M; Johannsen S; Sigel RKO
    J Biol Inorg Chem; 2018 Jan; 23(1):167-177. PubMed ID: 29218637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple roles of metal ions in large ribozymes.
    Donghi D; Schnabl J
    Met Ions Life Sci; 2011; 9():197-234. PubMed ID: 22010273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structure of a metal-binding site in the major groove of RNA complexed with cobalt (III) hexammine.
    Kieft JS; Tinoco I
    Structure; 1997 May; 5(5):713-21. PubMed ID: 9195889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Principles of ion recognition in RNA: insights from the group II intron structures.
    Marcia M; Pyle AM
    RNA; 2014 Apr; 20(4):516-27. PubMed ID: 24570483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualizing metal-ion-binding sites in group I introns by iron(II)-mediated Fenton reactions.
    Berens C; Streicher B; Schroeder R; Hillen W
    Chem Biol; 1998 Mar; 5(3):163-75. PubMed ID: 9545425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic characterization of the second step of group II intron splicing: role of metal ions and the cleavage site 2'-OH in catalysis.
    Gordon PM; Sontheimer EJ; Piccirilli JA
    Biochemistry; 2000 Oct; 39(42):12939-52. PubMed ID: 11041859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct sites of phosphorothioate substitution interfere with folding and splicing of the Anabaena group I intron.
    Lupták A; Doudna JA
    Nucleic Acids Res; 2004; 32(7):2272-80. PubMed ID: 15107495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural evidence for a two-metal-ion mechanism of group I intron splicing.
    Stahley MR; Strobel SA
    Science; 2005 Sep; 309(5740):1587-90. PubMed ID: 16141079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A magnesium ion core at the heart of a ribozyme domain.
    Cate JH; Hanna RL; Doudna JA
    Nat Struct Biol; 1997 Jul; 4(7):553-8. PubMed ID: 9228948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A second divalent metal ion in the group II intron reaction center.
    Gordon PM; Fong R; Piccirilli JA
    Chem Biol; 2007 Jun; 14(6):607-12. PubMed ID: 17584608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural requirement for Mg2+ binding in the group I intron core.
    Rangan P; Woodson SA
    J Mol Biol; 2003 May; 329(2):229-38. PubMed ID: 12758072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution structure of domain 5 of a group II intron ribozyme reveals a new RNA motif.
    Sigel RK; Sashital DG; Abramovitz DL; Palmer AG; Butcher SE; Pyle AM
    Nat Struct Mol Biol; 2004 Feb; 11(2):187-92. PubMed ID: 14745440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.