BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

479 related articles for article (PubMed ID: 17612717)

  • 1. The evolution of model catalytic systems; studies of structure, bonding and dynamics from single crystal metal surfaces to nanoparticles, and from low pressure (<10(-3) Torr) to high pressure (>10(-3) Torr) to liquid interfaces.
    Somorjai GA; York RL; Butcher D; Park JY
    Phys Chem Chem Phys; 2007 Jul; 9(27):3500-13. PubMed ID: 17612717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular surface chemistry by metal single crystals and nanoparticles from vacuum to high pressure.
    Somorjai GA; Park JY
    Chem Soc Rev; 2008 Oct; 37(10):2155-62. PubMed ID: 18818818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of the surface science of catalysis from single crystals to metal nanoparticles under pressure.
    Somorjai GA; Park JY
    J Chem Phys; 2008 May; 128(18):182504. PubMed ID: 18532789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular studies of model surfaces of metals from single crystals to nanoparticles under catalytic reaction conditions. Evolution from prenatal and postmortem studies of catalysts.
    Somorjai GA; Aliaga C
    Langmuir; 2010 Nov; 26(21):16190-203. PubMed ID: 20860409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques.
    Somorjai GA; Frei H; Park JY
    J Am Chem Soc; 2009 Nov; 131(46):16589-605. PubMed ID: 19919130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of surface catalyzed reactions; the roles of surface defects, surface diffusion, and hot electrons.
    Somorjai GA; Bratlie KM; Montano MO; Park JY
    J Phys Chem B; 2006 Oct; 110(40):20014-22. PubMed ID: 17020389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting.
    Roeffaers MB; Sels BF; Uji-I H; De Schryver FC; Jacobs PA; De Vos DE; Hofkens J
    Nature; 2006 Feb; 439(7076):572-5. PubMed ID: 16452976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bridging the pressure gap in model systems for heterogeneous catalysis with high-pressure scanning tunneling microscopy.
    Vang RT; Laegsgaard E; Besenbacher F
    Phys Chem Chem Phys; 2007 Jul; 9(27):3460-9. PubMed ID: 17612714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrahigh vacuum/high-pressure flow reactor for surface x-ray diffraction and grazing incidence small angle x-ray scattering studies close to conditions for industrial catalysis.
    van Rijn R; Ackermann MD; Balmes O; Dufrane T; Geluk A; Gonzalez H; Isern H; de Kuyper E; Petit L; Sole VA; Wermeille D; Felici R; Frenken JW
    Rev Sci Instrum; 2010 Jan; 81(1):014101. PubMed ID: 20113115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning tunneling microscopy as a tool to study catalytically relevant model systems.
    Vang RT; Lauritsen JV; Laegsgaard E; Besenbacher F
    Chem Soc Rev; 2008 Oct; 37(10):2191-203. PubMed ID: 18818822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sum frequency generation vibrational spectroscopic and high-pressure scanning tunneling microscopic studies of benzene hydrogenation on Pt(111).
    Bratlie KM; Montano MO; Flores LD; Paajanen M; Somorjai GA
    J Am Chem Soc; 2006 Oct; 128(39):12810-6. PubMed ID: 17002376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen and deuterium exchange on Pt(111) and its poisoning by carbon monoxide studied by surface sensitive high-pressure techniques.
    Montano M; Bratlie K; Salmeron M; Somorjai GA
    J Am Chem Soc; 2006 Oct; 128(40):13229-34. PubMed ID: 17017803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability.
    Narayanan R; El-Sayed MA
    J Phys Chem B; 2005 Jul; 109(26):12663-76. PubMed ID: 16852568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complementary structure sensitive and insensitive catalytic relationships.
    Van Santen RA
    Acc Chem Res; 2009 Jan; 42(1):57-66. PubMed ID: 18986176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An investigation of the influence of chain length on the interfacial ordering of L-lysine and L-proline and their homopeptides at hydrophobic and hydrophilic interfaces studied by sum frequency generation and quartz crystal microbalance.
    York RL; Holinga GJ; Somorjai GA
    Langmuir; 2009 Aug; 25(16):9369-74. PubMed ID: 19719227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface science and catalysis.
    Somorjai GA
    Science; 1985 Feb; 227(4689):902-8. PubMed ID: 17821221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption and reaction of methanol on supported palladium catalysts: microscopic-level studies from ultrahigh vacuum to ambient pressure conditions.
    Bäumer M; Libuda J; Neyman KM; Rösch N; Rupprechter G; Freund HJ
    Phys Chem Chem Phys; 2007 Jul; 9(27):3541-58. PubMed ID: 17612720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time single-molecule imaging of oxidation catalysis at a liquid-solid interface.
    Hulsken B; Van Hameren R; Gerritsen JW; Khoury T; Thordarson P; Crossley MJ; Rowan AE; Nolte RJ; Elemans JA; Speller S
    Nat Nanotechnol; 2007 May; 2(5):285-9. PubMed ID: 18654285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.