These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
476 related articles for article (PubMed ID: 17612717)
1. The evolution of model catalytic systems; studies of structure, bonding and dynamics from single crystal metal surfaces to nanoparticles, and from low pressure (<10(-3) Torr) to high pressure (>10(-3) Torr) to liquid interfaces. Somorjai GA; York RL; Butcher D; Park JY Phys Chem Chem Phys; 2007 Jul; 9(27):3500-13. PubMed ID: 17612717 [TBL] [Abstract][Full Text] [Related]
2. Molecular surface chemistry by metal single crystals and nanoparticles from vacuum to high pressure. Somorjai GA; Park JY Chem Soc Rev; 2008 Oct; 37(10):2155-62. PubMed ID: 18818818 [TBL] [Abstract][Full Text] [Related]
3. Evolution of the surface science of catalysis from single crystals to metal nanoparticles under pressure. Somorjai GA; Park JY J Chem Phys; 2008 May; 128(18):182504. PubMed ID: 18532789 [TBL] [Abstract][Full Text] [Related]
4. Molecular studies of model surfaces of metals from single crystals to nanoparticles under catalytic reaction conditions. Evolution from prenatal and postmortem studies of catalysts. Somorjai GA; Aliaga C Langmuir; 2010 Nov; 26(21):16190-203. PubMed ID: 20860409 [TBL] [Abstract][Full Text] [Related]
5. Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. Somorjai GA; Frei H; Park JY J Am Chem Soc; 2009 Nov; 131(46):16589-605. PubMed ID: 19919130 [TBL] [Abstract][Full Text] [Related]
6. Dynamics of surface catalyzed reactions; the roles of surface defects, surface diffusion, and hot electrons. Somorjai GA; Bratlie KM; Montano MO; Park JY J Phys Chem B; 2006 Oct; 110(40):20014-22. PubMed ID: 17020389 [TBL] [Abstract][Full Text] [Related]
7. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Roeffaers MB; Sels BF; Uji-I H; De Schryver FC; Jacobs PA; De Vos DE; Hofkens J Nature; 2006 Feb; 439(7076):572-5. PubMed ID: 16452976 [TBL] [Abstract][Full Text] [Related]
8. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity. Campbell CT Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711 [TBL] [Abstract][Full Text] [Related]
9. Bridging the pressure gap in model systems for heterogeneous catalysis with high-pressure scanning tunneling microscopy. Vang RT; Laegsgaard E; Besenbacher F Phys Chem Chem Phys; 2007 Jul; 9(27):3460-9. PubMed ID: 17612714 [TBL] [Abstract][Full Text] [Related]
10. Ultrahigh vacuum/high-pressure flow reactor for surface x-ray diffraction and grazing incidence small angle x-ray scattering studies close to conditions for industrial catalysis. van Rijn R; Ackermann MD; Balmes O; Dufrane T; Geluk A; Gonzalez H; Isern H; de Kuyper E; Petit L; Sole VA; Wermeille D; Felici R; Frenken JW Rev Sci Instrum; 2010 Jan; 81(1):014101. PubMed ID: 20113115 [TBL] [Abstract][Full Text] [Related]
11. Scanning tunneling microscopy as a tool to study catalytically relevant model systems. Vang RT; Lauritsen JV; Laegsgaard E; Besenbacher F Chem Soc Rev; 2008 Oct; 37(10):2191-203. PubMed ID: 18818822 [TBL] [Abstract][Full Text] [Related]
12. Sum frequency generation vibrational spectroscopic and high-pressure scanning tunneling microscopic studies of benzene hydrogenation on Pt(111). Bratlie KM; Montano MO; Flores LD; Paajanen M; Somorjai GA J Am Chem Soc; 2006 Oct; 128(39):12810-6. PubMed ID: 17002376 [TBL] [Abstract][Full Text] [Related]
13. Interface-confined oxide nanostructures for catalytic oxidation reactions. Fu Q; Yang F; Bao X Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033 [TBL] [Abstract][Full Text] [Related]
14. Hydrogen and deuterium exchange on Pt(111) and its poisoning by carbon monoxide studied by surface sensitive high-pressure techniques. Montano M; Bratlie K; Salmeron M; Somorjai GA J Am Chem Soc; 2006 Oct; 128(40):13229-34. PubMed ID: 17017803 [TBL] [Abstract][Full Text] [Related]
15. Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. Narayanan R; El-Sayed MA J Phys Chem B; 2005 Jul; 109(26):12663-76. PubMed ID: 16852568 [TBL] [Abstract][Full Text] [Related]
16. Complementary structure sensitive and insensitive catalytic relationships. Van Santen RA Acc Chem Res; 2009 Jan; 42(1):57-66. PubMed ID: 18986176 [TBL] [Abstract][Full Text] [Related]
17. An investigation of the influence of chain length on the interfacial ordering of L-lysine and L-proline and their homopeptides at hydrophobic and hydrophilic interfaces studied by sum frequency generation and quartz crystal microbalance. York RL; Holinga GJ; Somorjai GA Langmuir; 2009 Aug; 25(16):9369-74. PubMed ID: 19719227 [TBL] [Abstract][Full Text] [Related]
18. Surface science and catalysis. Somorjai GA Science; 1985 Feb; 227(4689):902-8. PubMed ID: 17821221 [TBL] [Abstract][Full Text] [Related]
19. Adsorption and reaction of methanol on supported palladium catalysts: microscopic-level studies from ultrahigh vacuum to ambient pressure conditions. Bäumer M; Libuda J; Neyman KM; Rösch N; Rupprechter G; Freund HJ Phys Chem Chem Phys; 2007 Jul; 9(27):3541-58. PubMed ID: 17612720 [TBL] [Abstract][Full Text] [Related]
20. Real-time single-molecule imaging of oxidation catalysis at a liquid-solid interface. Hulsken B; Van Hameren R; Gerritsen JW; Khoury T; Thordarson P; Crossley MJ; Rowan AE; Nolte RJ; Elemans JA; Speller S Nat Nanotechnol; 2007 May; 2(5):285-9. PubMed ID: 18654285 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]