These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17612726)

  • 1. Styrene synthesis over iron oxide catalysts: from single crystal model system to real catalysts.
    Schüle A; Nieken U; Shekhah O; Ranke W; Schlögl R; Kolios G
    Phys Chem Chem Phys; 2007 Jul; 9(27):3619-34. PubMed ID: 17612726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noble metal ionic catalysts.
    Hegde MS; Madras G; Patil KC
    Acc Chem Res; 2009 Jun; 42(6):704-12. PubMed ID: 19425544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxide Nanocrystal Model Catalysts.
    Huang W
    Acc Chem Res; 2016 Mar; 49(3):520-7. PubMed ID: 26938790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface science investigations of oxidative chemistry on gold.
    Gong J; Mullins CB
    Acc Chem Res; 2009 Aug; 42(8):1063-73. PubMed ID: 19588952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular-level understanding of the catalytic cycle of dehydrogenation of ethylbenzene to styrene over iron oxide-based catalyst.
    Huang W; Ranke W; Schlögl R
    J Phys Chem B; 2005 May; 109(19):9202-4. PubMed ID: 16852098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolution of model catalytic systems; studies of structure, bonding and dynamics from single crystal metal surfaces to nanoparticles, and from low pressure (<10(-3) Torr) to high pressure (>10(-3) Torr) to liquid interfaces.
    Somorjai GA; York RL; Butcher D; Park JY
    Phys Chem Chem Phys; 2007 Jul; 9(27):3500-13. PubMed ID: 17612717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bridging the pressure and material gap in heterogeneous catalysis: cobalt Fischer-Tropsch catalysts from surface science to industrial application.
    Oosterbeek H
    Phys Chem Chem Phys; 2007 Jul; 9(27):3570-6. PubMed ID: 17612722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring supported-nanocluster heterogeneous catalyst formation: product and kinetic evidence for a 2-step, nucleation and autocatalytic growth mechanism of Pt(0)n formation from H2PtCl6 on Al2O3 or TiO2.
    Mondloch JE; Yan X; Finke RG
    J Am Chem Soc; 2009 May; 131(18):6389-96. PubMed ID: 19379011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic dehydration of ethanol using transition metal oxide catalysts.
    Zaki T
    J Colloid Interface Sci; 2005 Apr; 284(2):606-13. PubMed ID: 15780300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel transition-metal-free heterogeneous epoxidation catalysts discovered by means of high-throughput experimentation.
    Pescarmona PP; Janssen KP; Jacobs PA
    Chemistry; 2007; 13(23):6562-72. PubMed ID: 17508377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting.
    Roeffaers MB; Sels BF; Uji-I H; De Schryver FC; Jacobs PA; De Vos DE; Hofkens J
    Nature; 2006 Feb; 439(7076):572-5. PubMed ID: 16452976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of manganese oxide octahedral molecular sieves in styrene epoxidation.
    Ghosh R; Shen X; Villegas JC; Ding Y; Malinger K; Suib SL
    J Phys Chem B; 2006 Apr; 110(14):7592-9. PubMed ID: 16599543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perovskite oxides: materials science in catalysis.
    Voorhoeve RJ; Johnson DW; Remeika JP; Gallagher PK
    Science; 1977 Mar; 195(4281):827-33. PubMed ID: 17783142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of the surface science of catalysis from single crystals to metal nanoparticles under pressure.
    Somorjai GA; Park JY
    J Chem Phys; 2008 May; 128(18):182504. PubMed ID: 18532789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces.
    Stamenkovic VR; Mun BS; Arenz M; Mayrhofer KJ; Lucas CA; Wang G; Ross PN; Markovic NM
    Nat Mater; 2007 Mar; 6(3):241-7. PubMed ID: 17310139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide.
    Xue X; Hanna K; Deng N
    J Hazard Mater; 2009 Jul; 166(1):407-14. PubMed ID: 19167810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring surface metal oxide catalytic active sites with Raman spectroscopy.
    Wachs IE; Roberts CA
    Chem Soc Rev; 2010 Dec; 39(12):5002-17. PubMed ID: 21038054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic oxidation of cyanides in an aqueous phase over individual and manganese-modified cobalt oxide systems.
    Christoskova S; Stoyanova M
    J Hazard Mater; 2009 Jun; 165(1-3):690-5. PubMed ID: 19038496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst.
    Chen W; Fan Z; Pan X; Bao X
    J Am Chem Soc; 2008 Jul; 130(29):9414-9. PubMed ID: 18576652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wet oxidation of phenol over transition metal oxide catalysts supported on Ce0.65 Zr0.35 O2 prepared by continuous hydrothermal synthesis in supercritical water.
    Kim KH; Kim JR; Ihm SK
    J Hazard Mater; 2009 Aug; 167(1-3):1158-62. PubMed ID: 19264401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.