These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17612734)

  • 1. Phase field modeling of CH4 hydrate conversion into CO2 hydrate in the presence of liquid CO2.
    Tegze G; Gránásy L; Kvamme B
    Phys Chem Chem Phys; 2007 Jun; 9(24):3104-11. PubMed ID: 17612734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale approach to CO2 hydrate formation in aqueous solution: phase field theory and molecular dynamics. Nucleation and growth.
    Tegze G; Pusztai T; Tóth G; Gránásy L; Svandal A; Buanes T; Kuznetsova T; Kvamme B
    J Chem Phys; 2006 Jun; 124(23):234710. PubMed ID: 16821944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic properties and phase transtions in the H2O/CO2/CH4 system.
    Svandal A; Kuznetsova T; Kvamme B
    Phys Chem Chem Phys; 2006 Apr; 8(14):1707-13. PubMed ID: 16633655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using magnetic resonance imaging to monitor CH4 hydrate formation and spontaneous conversion of CH4 hydrate to CO2 hydrate in porous media.
    Baldwin BA; Stevens J; Howard JJ; Graue A; Kvamme B; Aspenes E; Ersland G; Husebø J; Zornes DR
    Magn Reson Imaging; 2009 Jun; 27(5):720-6. PubMed ID: 19168304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal conductivity of methane hydrate from experiment and molecular simulation.
    Rosenbaum EJ; English NJ; Johnson JK; Shaw DW; Warzinski RP
    J Phys Chem B; 2007 Nov; 111(46):13194-205. PubMed ID: 17967008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase equilibrium measurements and crystallographic analyses on structure-H type gas hydrate formed from the CH4-CO2-neohexane-water system.
    Uchida T; Ohmura R; Ikeda IY; Nagao J; Takeya S; Hori A
    J Phys Chem B; 2006 Mar; 110(10):4583-8. PubMed ID: 16526688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of SO2 and NO2 impurities on CO2 gas hydrate formation and stability.
    Beeskow-Strauch B; Schicks JM; Spangenberg E; Erzinger J
    Chemistry; 2011 Apr; 17(16):4376-84. PubMed ID: 21433127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rates and mechanisms of conversion of ice nanocrystals to hydrates of HCl and HBr: acid diffusion in the ionic hydrates.
    Devlin JP; Gulluru DB; Buch V
    J Phys Chem B; 2005 Mar; 109(8):3392-401. PubMed ID: 16851370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The growth of structure I methane hydrate from molecular dynamics simulations.
    Tung YT; Chen LJ; Chen YP; Lin ST
    J Phys Chem B; 2010 Aug; 114(33):10804-13. PubMed ID: 20669917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of low field NMR T2 measurements to clathrate hydrates.
    Gao S; Chapman WG; House W
    J Magn Reson; 2009 Apr; 197(2):208-12. PubMed ID: 19201233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition.
    Alavi S; Ripmeester JA
    J Chem Phys; 2010 Apr; 132(14):144703. PubMed ID: 20406006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The conversion process of hydrocarbon hydrates into CO2 hydrates and vice versa: thermodynamic considerations.
    Schicks JM; Luzi M; Beeskow-Strauch B
    J Phys Chem A; 2011 Nov; 115(46):13324-31. PubMed ID: 21928801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative measurement and mechanisms for CH4 production from hydrates with the injection of liquid CO2.
    Lee BR; Koh CA; Sum AK
    Phys Chem Chem Phys; 2014 Jul; 16(28):14922-7. PubMed ID: 24931508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compressibility, thermal expansion coefficient and heat capacity of CH4 and CO2 hydrate mixtures using molecular dynamics simulations.
    Ning FL; Glavatskiy K; Ji Z; Kjelstrup S; H Vlugt TJ
    Phys Chem Chem Phys; 2015 Jan; 17(4):2869-83. PubMed ID: 25501882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular-dynamics simulations of methane hydrate dissociation.
    English NJ; Johnson JK; Taylor CE
    J Chem Phys; 2005 Dec; 123(24):244503. PubMed ID: 16396545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rates and mechanisms of conversion of ice nanocrystals to ether clathrate hydrates: guest-molecule catalytic effects at approximately 120 k.
    Gulluru DB; Devlin JP
    J Phys Chem A; 2006 Feb; 110(5):1901-6. PubMed ID: 16451023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrate kinetics study in the presence of nonaqueous liquid by nuclear magnetic resonance spectroscopy and imaging.
    Susilo R; Moudrakovski IL; Ripmeester JA; Englezos P
    J Phys Chem B; 2006 Dec; 110(51):25803-9. PubMed ID: 17181224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling heating curve for gas hydrate dissociation in porous media.
    Dicharry C; Gayet P; Marion G; Graciaa A; Nesterov AN
    J Phys Chem B; 2005 Sep; 109(36):17205-11. PubMed ID: 16853195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase diagram and high-pressure boundary of hydrate formation in the carbon dioxide-water system.
    Manakov AY; Dyadin YA; Ogienko AG; Kurnosov AV; Aladko EY; Larionov EG; Zhurko FV; Voronin VI; Berger IF; Goryainov SV; Lihacheva AY; Ancharov AI
    J Phys Chem B; 2009 May; 113(20):7257-62. PubMed ID: 19438280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular simulation of the potential of methane reoccupation during the replacement of methane hydrate by CO(2).
    Geng CY; Wen H; Zhou H
    J Phys Chem A; 2009 May; 113(18):5463-9. PubMed ID: 19361183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.