BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

547 related articles for article (PubMed ID: 17612968)

  • 1. Protein kinase C-gamma activation in the early streptozotocin diabetic rat lens.
    Lin D; Harris R; Stutzman R; Zampighi GA; Davidson H; Takemoto DJ
    Curr Eye Res; 2007 Jun; 32(6):523-32. PubMed ID: 17612968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific retinal diacylglycerol and protein kinase C beta isoform modulation mimics abnormal retinal hemodynamics in diabetic rats.
    Bursell SE; Takagi C; Clermont AC; Takagi H; Mori F; Ishii H; King GL
    Invest Ophthalmol Vis Sci; 1997 Dec; 38(13):2711-20. PubMed ID: 9418723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PKC isoenzymes in the chicken lens and TPA-induced effects on intercellular communication.
    Berthoud VM; Westphale EM; Grigoryeva A; Beyer EC
    Invest Ophthalmol Vis Sci; 2000 Mar; 41(3):850-8. PubMed ID: 10711703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of gap junction intercellular communication in primary canine lens epithelial cells: role of protein kinase C.
    Long AC; Colitz CM; Bomser JA
    Curr Eye Res; 2007 Mar; 32(3):223-31. PubMed ID: 17453942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of protein kinase Cgamma on gap junction disassembly in lens epithelial cells and retinal cells in culture.
    Wagner LM; Saleh SM; Boyle DJ; Takemoto DJ
    Mol Vis; 2002 Mar; 8():59-66. PubMed ID: 11951087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The differential effects of 12-O-tetradecanoylphorbol-13-acetate on the gap junctions and connexins of the developing mammalian lens.
    Tenbroek EM; Louis CF; Johnson R
    Dev Biol; 1997 Nov; 191(1):88-102. PubMed ID: 9356174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IGF-I-induced phosphorylation of connexin 43 by PKCgamma: regulation of gap junctions in rabbit lens epithelial cells.
    Lin D; Boyle DL; Takemoto DJ
    Invest Ophthalmol Vis Sci; 2003 Mar; 44(3):1160-8. PubMed ID: 12601045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alterations in lens protein tyrosine phosphorylation and phosphatidylinositol 3-kinase signaling during selenite cataract formation.
    Chandrasekher G; Sailaja D
    Curr Eye Res; 2004 Feb; 28(2):135-44. PubMed ID: 14972719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purinergic receptor-mediated regulation of lens connexin43.
    Lurtz MM; Louis CF
    Invest Ophthalmol Vis Sci; 2007 Sep; 48(9):4177-86. PubMed ID: 17724204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and evaluation of novel aldose reductase inhibitors: Effects on lens protein kinase Cgamma.
    Lewis S; Karrer J; Saleh S; Chan X; Tan Z; Hua D; McGill J; Pang YP; Fenwick B; Brightman A; Takemoto D
    Mol Vis; 2001 Jul; 7():164-71. PubMed ID: 11483892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordinated expression of Ets-1, pERK1/2, and VEGF in retina of streptozotocin-induced diabetic rats.
    Du ZJ; Kamei M; Suzuki M; Tano Y; Wang BR; Hui YN
    Ophthalmic Res; 2007; 39(4):224-31. PubMed ID: 17622743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Focal adhesion kinase (FAK) expression and activation during lens development.
    Kokkinos MI; Brown HJ; de Iongh RU
    Mol Vis; 2007 Mar; 13():418-30. PubMed ID: 17417603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay between PKC and the MAP kinase pathway in Connexin43 phosphorylation and inhibition of gap junction intercellular communication.
    Sirnes S; Kjenseth A; Leithe E; Rivedal E
    Biochem Biophys Res Commun; 2009 Apr; 382(1):41-5. PubMed ID: 19258009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential phosphorylation of connexin46 and connexin50 by H2O2 activation of protein kinase Cgamma.
    Lin D; Lobell S; Jewell A; Takemoto DJ
    Mol Vis; 2004 Sep; 10():688-95. PubMed ID: 15467523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protective role of arjunolic acid in response to streptozotocin-induced type-I diabetes via the mitochondrial dependent and independent pathways.
    Manna P; Sinha M; Sil PC
    Toxicology; 2009 Mar; 257(1-2):53-63. PubMed ID: 19133311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treadmill exercise improves cognitive function and facilitates nerve growth factor signaling by activating mitogen-activated protein kinase/extracellular signal-regulated kinase1/2 in the streptozotocin-induced diabetic rat hippocampus.
    Chae CH; Jung SL; An SH; Park BY; Wang SW; Cho IH; Cho JY; Kim HT
    Neuroscience; 2009 Dec; 164(4):1665-73. PubMed ID: 19800940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of oleic acid-induced gap junctional disassembly in rat cardiomyocytes.
    Huang YS; Tseng YZ; Wu JC; Wang SM
    J Mol Cell Cardiol; 2004 Sep; 37(3):755-66. PubMed ID: 15350848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tyrosine hydroxylase induction by basic fibroblast growth factor and cyclic AMP analogs in striatal neural stem cells: role of ERK1/ERK2 mitogen-activated protein kinase and protein kinase C.
    López-Toledano MA; Redondo C; Lobo MV; Reimers D; Herranz AS; Paíno CL; Bazán E
    J Histochem Cytochem; 2004 Sep; 52(9):1177-89. PubMed ID: 15314085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunochemical detection of glycated beta- and gamma-crystallins in lens and their circulating autoantibodies (IgG) in streptozocin induced diabetic rat.
    Ranjan M; Nayak S; Rao BS
    Mol Vis; 2006 Sep; 12():1077-85. PubMed ID: 17093392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of insulin replacement on cardiac apoptotic and survival pathways in streptozotocin-induced diabetic rats.
    Kuo WW; Chung LC; Liu CT; Wu SP; Kuo CH; Tsai FJ; Tsai CH; Lu MC; Huang CY; Lee SD
    Cell Biochem Funct; 2009 Oct; 27(7):479-87. PubMed ID: 19718675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.