These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 17613006)
41. Retinoid metabolism and ALDH1A2 (RALDH2) expression are altered in the transgenic adenocarcinoma mouse prostate model. Touma SE; Perner S; Rubin MA; Nanus DM; Gudas LJ Biochem Pharmacol; 2009 Nov; 78(9):1127-38. PubMed ID: 19549509 [TBL] [Abstract][Full Text] [Related]
42. Expression pattern of mouse homolog of prostate-specific membrane antigen (FOLH1) in the transgenic adenocarcinoma of the mouse prostate model. Schmittgen TD; Zakrajsek BA; Hill RE; Liu Q; Reeves JJ; Axford PD; Singer MJ; Reed MW Prostate; 2003 Jun; 55(4):308-16. PubMed ID: 12712410 [TBL] [Abstract][Full Text] [Related]
43. High animal fat intake enhances prostate cancer progression and reduces glutathione peroxidase 3 expression in early stages of TRAMP mice. Chang SN; Han J; Abdelkader TS; Kim TH; Lee JM; Song J; Kim KS; Park JH; Park JH Prostate; 2014 Sep; 74(13):1266-77. PubMed ID: 25053105 [TBL] [Abstract][Full Text] [Related]
44. Androgen-independent prostate cancer progression in the TRAMP model. Gingrich JR; Barrios RJ; Kattan MW; Nahm HS; Finegold MJ; Greenberg NM Cancer Res; 1997 Nov; 57(21):4687-91. PubMed ID: 9354422 [TBL] [Abstract][Full Text] [Related]
46. High grade prostatic intraepithelial neoplasia does not display loss of heterozygosity at the mutation locus in BRCA2 mutation carriers with aggressive prostate cancer. Willems-Jones A; Kavanagh L; Clouston D; Bolton D; ; Fox S; Thorne H BJU Int; 2012 Dec; 110(11 Pt C):E1181-6. PubMed ID: 23035815 [TBL] [Abstract][Full Text] [Related]
47. TLR7 expression is decreased during tumour progression in transgenic adenocarcinoma of mouse prostate mice and its activation inhibits growth of prostate cancer cells. Han JH; Park SY; Kim JB; Cho SD; Kim B; Kim BY; Kang MJ; Kim DJ; Park JH; Park JH Am J Reprod Immunol; 2013 Oct; 70(4):317-26. PubMed ID: 23790156 [TBL] [Abstract][Full Text] [Related]
48. Androgen signaling is a confounding factor for β-catenin-mediated prostate tumorigenesis. Lee SH; Luong R; Johnson DT; Cunha GR; Rivina L; Gonzalgo ML; Sun Z Oncogene; 2016 Feb; 35(6):702-14. PubMed ID: 25893287 [TBL] [Abstract][Full Text] [Related]
49. Chinese medicinal herb Scutellaria barbata modulates apoptosis and cell survival in murine and human prostate cancer cells and tumor development in TRAMP mice. Wong BY; Nguyen DL; Lin T; Wong HH; Cavalcante A; Greenberg NM; Hausted RP; Zheng J Eur J Cancer Prev; 2009 Aug; 18(4):331-41. PubMed ID: 19444125 [TBL] [Abstract][Full Text] [Related]
50. Development of PIN and prostate adenocarcinoma cell lines: a model system for multistage tumor progression. Soares CR; Shibata MA; Green JE; Jorcyk CL Neoplasia; 2002; 4(2):112-20. PubMed ID: 11896566 [TBL] [Abstract][Full Text] [Related]
51. Phellodendron amurense bark extract prevents progression of prostate tumors in transgenic adenocarcinoma of mouse prostate: potential for prostate cancer management. Ghosh R; Graham H; Rivas P; Tan XJ; Crosby K; Bhaskaran S; Schoolfield J; Banu J; Fernandes G; Yeh IT; Kumar AP Anticancer Res; 2010 Mar; 30(3):857-65. PubMed ID: 20393007 [TBL] [Abstract][Full Text] [Related]
52. Dissociation of epithelial and neuroendocrine carcinoma lineages in the transgenic adenocarcinoma of mouse prostate model of prostate cancer. Chiaverotti T; Couto SS; Donjacour A; Mao JH; Nagase H; Cardiff RD; Cunha GR; Balmain A Am J Pathol; 2008 Jan; 172(1):236-46. PubMed ID: 18156212 [TBL] [Abstract][Full Text] [Related]
53. A null-mutation in the Znt7 gene accelerates prostate tumor formation in a transgenic adenocarcinoma mouse prostate model. Tepaamorndech S; Huang L; Kirschke CP Cancer Lett; 2011 Sep; 308(1):33-42. PubMed ID: 21621325 [TBL] [Abstract][Full Text] [Related]
54. CG island methylation changes near the GSTP1 gene in prostatic intraepithelial neoplasia. Brooks JD; Weinstein M; Lin X; Sun Y; Pin SS; Bova GS; Epstein JI; Isaacs WB; Nelson WG Cancer Epidemiol Biomarkers Prev; 1998 Jun; 7(6):531-6. PubMed ID: 9641498 [TBL] [Abstract][Full Text] [Related]
55. MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells. Iwata T; Schultz D; Hicks J; Hubbard GK; Mutton LN; Lotan TL; Bethel C; Lotz MT; Yegnasubramanian S; Nelson WG; Dang CV; Xu M; Anele U; Koh CM; Bieberich CJ; De Marzo AM PLoS One; 2010 Feb; 5(2):e9427. PubMed ID: 20195545 [TBL] [Abstract][Full Text] [Related]
56. Increased expression of MUC18 correlates with the metastatic progression of mouse prostate adenocarcinoma in the TRAMP model. Wu GJ; Fu P; Chiang CF; Huss WJ; Greenberg NM; Wu MW J Urol; 2005 May; 173(5):1778-83. PubMed ID: 15821586 [TBL] [Abstract][Full Text] [Related]
57. Proteomic profiling of potential molecular targets of methyl-selenium compounds in the transgenic adenocarcinoma of mouse prostate model. Zhang J; Wang L; Anderson LB; Witthuhn B; Xu Y; Lü J Cancer Prev Res (Phila); 2010 Aug; 3(8):994-1006. PubMed ID: 20647336 [TBL] [Abstract][Full Text] [Related]
58. Fibroblast growth factor 8 isoform B overexpression in prostate epithelium: a new mouse model for prostatic intraepithelial neoplasia. Song Z; Wu X; Powell WC; Cardiff RD; Cohen MB; Tin RT; Matusik RJ; Miller GJ; Roy-Burman P Cancer Res; 2002 Sep; 62(17):5096-105. PubMed ID: 12208767 [TBL] [Abstract][Full Text] [Related]
59. Lack of high-dose radiation mediated prostate cancer promotion and low-dose radiation adaptive response in the TRAMP mouse model. Lawrence MD; Ormsby RJ; Blyth BJ; Bezak E; England G; Newman MR; Tilley WD; Sykes PJ Radiat Res; 2013 Oct; 180(4):376-88. PubMed ID: 23971516 [TBL] [Abstract][Full Text] [Related]
60. Loss of MyD88 leads to more aggressive TRAMP prostate cancer and influences tumor infiltrating lymphocytes. Peek EM; Song W; Zhang H; Huang J; Chin AI Prostate; 2015 Apr; 75(5):463-73. PubMed ID: 25597486 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]