These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 17613194)
1. Siphon regulatory devices: their role in the treatment of hydrocephalus. Kurtom KH; Magram G Neurosurg Focus; 2007 Apr; 22(4):E5. PubMed ID: 17613194 [TBL] [Abstract][Full Text] [Related]
2. Comparison of anti-siphon devices-how do they affect CSF dynamics in supine and upright posture? Gehlen M; Eklund A; Kurtcuoglu V; Malm J; Schmid Daners M Acta Neurochir (Wien); 2017 Aug; 159(8):1389-1397. PubMed ID: 28660395 [TBL] [Abstract][Full Text] [Related]
3. Addressing the siphoning effect in new shunt designs by decoupling the activation pressure and the pressure gradient across the valve. Mattei TA; Morris M; Nowak K; Smith D; Yee J; Goulart CR; Zborowski A; Lin JJ J Neurosurg Pediatr; 2013 Feb; 11(2):181-7. PubMed ID: 23215676 [TBL] [Abstract][Full Text] [Related]
5. In vitro performance and principles of anti-siphoning devices. Freimann FB; Kimura T; Stockhammer F; Schulz M; Rohde V; Thomale UW Acta Neurochir (Wien); 2014 Nov; 156(11):2191-9. PubMed ID: 25123252 [TBL] [Abstract][Full Text] [Related]
6. Risks of using siphon-reducing devices. Kremer P; Aschoff A; Kunze S Childs Nerv Syst; 1994 May; 10(4):231-5. PubMed ID: 7923232 [TBL] [Abstract][Full Text] [Related]
7. Rationale and methodology of the multicenter pediatric cerebrospinal fluid shunt design trial. Pediatric Hydrocephalus Treatment Evaluation Group. Drake JM; Kestle J Childs Nerv Syst; 1996 Aug; 12(8):434-47. PubMed ID: 8891361 [TBL] [Abstract][Full Text] [Related]
8. [Development of shunt technology especially for idiopathic normal pressure hydrocephalus]. Hashimoto MA Brain Nerve; 2008 Mar; 60(3):247-55. PubMed ID: 18402072 [TBL] [Abstract][Full Text] [Related]
9. Posture-independent piston valve: a novel valve mechanism that actuates based on intracranial pressure alone. Medow JE; Luzzio CC J Neurosurg Pediatr; 2012 Jan; 9(1):64-8. PubMed ID: 22208323 [TBL] [Abstract][Full Text] [Related]
10. CSF shunts 50 years on--past, present and future. Drake JM; Kestle JR; Tuli S Childs Nerv Syst; 2000 Nov; 16(10-11):800-4. PubMed ID: 11151733 [TBL] [Abstract][Full Text] [Related]
11. An adjustable CSF shunt: advices for clinical use. Lundkvist B; Eklund A; Koskinen LO; Malm J Acta Neurol Scand; 2003 Jul; 108(1):38-42. PubMed ID: 12807391 [TBL] [Abstract][Full Text] [Related]
13. The use of shunting devices for cerebrospinal fluid in Canada. Hoffman HJ; Smith MS Can J Neurol Sci; 1986 May; 13(2):81-7. PubMed ID: 3719471 [TBL] [Abstract][Full Text] [Related]
14. Computer modeling of siphoning for CSF shunt design evaluation. Drake JM; Tenti G; Sivalsganathan S Pediatr Neurosurg; 1994; 21(1):6-15. PubMed ID: 7947313 [TBL] [Abstract][Full Text] [Related]
15. Shunt Devices for Neurointensivists: Complications and Management. Smith G; Pace J; Scoco A; Singh G; Kandregula K; Manjila S; Ramos-Estebanez C Neurocrit Care; 2017 Oct; 27(2):265-275. PubMed ID: 28243998 [TBL] [Abstract][Full Text] [Related]
16. [Effect of the anti-siphon device (ASD) on the function of various hydrocephalus drainage systems in the child]. Gruber R; Glaser F Z Kinderchir; 1986 Dec; 41(6):327-34. PubMed ID: 3825299 [TBL] [Abstract][Full Text] [Related]
17. Treating Hydrocephalus with Retrograde Ventriculosinus Shunt: Prospective Clinical Study. Baert EJ; Dewaele F; Vandersteene J; Hallaert G; Kalala JO; Van Roost D World Neurosurg; 2018 Oct; 118():e34-e42. PubMed ID: 29953953 [TBL] [Abstract][Full Text] [Related]