BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 17613526)

  • 1. Peroxisomes contain a specific phytanoyl-CoA/pristanoyl-CoA thioesterase acting as a novel auxiliary enzyme in alpha- and beta-oxidation of methyl-branched fatty acids in mouse.
    Westin MAK; Hunt MC; Alexson SEH
    J Biol Chem; 2007 Sep; 282(37):26707-26716. PubMed ID: 17613526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of an acyl-coA thioesterase that functions as a major regulator of peroxisomal lipid metabolism.
    Hunt MC; Solaas K; Kase BF; Alexson SE
    J Biol Chem; 2002 Jan; 277(2):1128-38. PubMed ID: 11673457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytanic acid must be activated to phytanoyl-CoA prior to its alpha-oxidation in rat liver peroxisomes.
    Watkins PA; Howard AE; Mihalik SJ
    Biochim Biophys Acta; 1994 Oct; 1214(3):288-94. PubMed ID: 7918611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of pristanal dehydrogenase activity in peroxisomes: conclusive evidence that the complete phytanic acid alpha-oxidation pathway is localized in peroxisomes.
    Jansen GA; van den Brink DM; Ofman R; Draghici O; Dacremont G; Wanders RJ
    Biochem Biophys Res Commun; 2001 May; 283(3):674-9. PubMed ID: 11341778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytanic acid activation in rat liver peroxisomes is catalyzed by long-chain acyl-CoA synthetase.
    Watkins PA; Howard AE; Gould SJ; Avigan J; Mihalik SJ
    J Lipid Res; 1996 Nov; 37(11):2288-95. PubMed ID: 8978480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peroxisomal beta-oxidation of branched chain fatty acids in rat liver. Evidence that carnitine palmitoyltransferase I prevents transport of branched chain fatty acids into mitochondria.
    Singh H; Beckman K; Poulos A
    J Biol Chem; 1994 Apr; 269(13):9514-20. PubMed ID: 8144536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraorganellar localization of CoASH-independent phytanic acid oxidation in human liver peroxisomes.
    Pahan K; Singh I
    FEBS Lett; 1993 Oct; 333(1-2):154-8. PubMed ID: 8224157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The metabolism of phytanic acid and pristanic acid in man: a review.
    Verhoeven NM; Wanders RJ; Poll-The BT; Saudubray JM; Jakobs C
    J Inherit Metab Dis; 1998 Oct; 21(7):697-728. PubMed ID: 9819701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A phytol-enriched diet induces changes in fatty acid metabolism in mice both via PPARalpha-dependent and -independent pathways.
    Gloerich J; van Vlies N; Jansen GA; Denis S; Ruiter JP; van Werkhoven MA; Duran M; Vaz FM; Wanders RJ; Ferdinandusse S
    J Lipid Res; 2005 Apr; 46(4):716-26. PubMed ID: 15654129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytanic acid metabolism in health and disease.
    Wanders RJ; Komen J; Ferdinandusse S
    Biochim Biophys Acta; 2011 Sep; 1811(9):498-507. PubMed ID: 21683154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytanic acid oxidation: topographical localization of phytanoyl-CoA ligase and transport of phytanic acid into human peroxisomes.
    Pahan K; Singh I
    J Lipid Res; 1995 May; 36(5):986-97. PubMed ID: 7544821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system.
    Reddy JK; Hashimoto T
    Annu Rev Nutr; 2001; 21():193-230. PubMed ID: 11375435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peroxisomal lipid degradation via beta- and alpha-oxidation in mammals.
    Mannaerts GP; Van Veldhoven PP; Casteels M
    Cell Biochem Biophys; 2000; 32 Spring():73-87. PubMed ID: 11330072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel functions of acyl-CoA thioesterases and acyltransferases as auxiliary enzymes in peroxisomal lipid metabolism.
    Hunt MC; Alexson SE
    Prog Lipid Res; 2008 Nov; 47(6):405-21. PubMed ID: 18538142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The identification of a succinyl-CoA thioesterase suggests a novel pathway for succinate production in peroxisomes.
    Westin MA; Hunt MC; Alexson SE
    J Biol Chem; 2005 Nov; 280(46):38125-32. PubMed ID: 16141203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peroxisomal trans-2-enoyl-CoA reductase is involved in phytol degradation.
    Gloerich J; Ruiter JP; van den Brink DM; Ofman R; Ferdinandusse S; Wanders RJ
    FEBS Lett; 2006 Apr; 580(8):2092-6. PubMed ID: 16546181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstration of dimethylnonanoyl-CoA thioesterase activity in rat liver peroxisomes followed by purification and molecular cloning of the thioesterase involved.
    Ofman R; el Mrabet L; Dacremont G; Spijer D; Wanders RJ
    Biochem Biophys Res Commun; 2002 Jan; 290(2):629-34. PubMed ID: 11785945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytol-induced pathology in 2-hydroxyacyl-CoA lyase (HACL1) deficient mice. Evidence for a second non-HACL1-related lyase.
    Mezzar S; De Schryver E; Asselberghs S; Meyhi E; Morvay PL; Baes M; Van Veldhoven PP
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Sep; 1862(9):972-990. PubMed ID: 28629946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the oxidation of phytanic acid and pristanic acid in human fibroblasts by acylcarnitine analysis.
    Verhoeven NM; Jakobs C; ten Brink HJ; Wanders RJ; Roe CR
    J Inherit Metab Dis; 1998 Oct; 21(7):753-60. PubMed ID: 9819705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytanic acid alpha-oxidation: identification of 2-hydroxyphytanoyl-CoA lyase in rat liver and its localisation in peroxisomes.
    Jansen GA; Verhoeven NM; Denis S; Romeijn G; Jakobs C; ten Brink HJ; Wanders RJ
    Biochim Biophys Acta; 1999 Sep; 1440(2-3):176-82. PubMed ID: 10521701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.