These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 176141)

  • 101. Factors affecting transformation of Bacillus licheniformis.
    Thorne CB; Stull HB
    J Bacteriol; 1966 Mar; 91(3):1012-20. PubMed ID: 5929742
    [TBL] [Abstract][Full Text] [Related]  

  • 102. NATURAL FACTORS INVOLVED IN THE INDUCTION OF CYST FORMATION IN AZOTOBACTER.
    LAYNE JS; JOHNSON EJ
    J Bacteriol; 1964 Mar; 87(3):684-9. PubMed ID: 14127586
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Ultrastructural and physiological changes occurring upon germination and outgrowth of Azotobacter vinelandii cysts.
    Lin LP; Pankratz S; Sadoff HL
    J Bacteriol; 1978 Aug; 135(2):641-6. PubMed ID: 681284
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Encystment and germination in Azotobacter vinelandii.
    Sadoff HL
    Bacteriol Rev; 1975 Dec; 39(4):516-39. PubMed ID: 1212151
    [No Abstract]   [Full Text] [Related]  

  • 105. Alternative Function of the Electron Transport System in Azotobacter vinelandii: Removal of Excess Reductant by the Cytochrome d Pathway.
    Liu J; Lee F; Lin C; Yao X; Davenport JW; Wong T
    Appl Environ Microbiol; 1995 Nov; 61(11):3998-4003. PubMed ID: 16535163
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Morphogenesis of cysts in Azotobacter vinelandii.
    Hitchins VM; Sadoff HL
    J Bacteriol; 1970 Oct; 104(1):492-8. PubMed ID: 5473905
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Giant cysts and cysts with multiple central bodies in Azotobacter vinelandii.
    Cagle GD; Vela GR
    J Bacteriol; 1971 Jul; 107(1):315-9. PubMed ID: 4105031
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Unique lipids in Azotobacter vinelandii cysts: synthesis, distribution, and fate during germination.
    Su CJ; Sadoff HL
    J Bacteriol; 1981 Jul; 147(1):91-6. PubMed ID: 7240100
    [TBL] [Abstract][Full Text] [Related]  

  • 109. High Frequency of Natural Genetic Transformation of Pseudomonas stutzeri in Soil Extract Supplemented with a Carbon/Energy and Phosphorus Source.
    Lorenz MG; Wackernagel W
    Appl Environ Microbiol; 1991 Apr; 57(4):1246-51. PubMed ID: 16348463
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Relationship of encapsulation and encystment in Azotobacter.
    Eklund C; Pope LM; Wyss O
    J Bacteriol; 1966 Dec; 92(6):1828-30. PubMed ID: 5958112
    [No Abstract]   [Full Text] [Related]  

  • 111. Transformation of Acinetobacter calco-aceticus (Bacterium anitratum).
    Juni E; Janik A
    J Bacteriol; 1969 Apr; 98(1):281-8. PubMed ID: 5781579
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Mechanisms and Regulation of Extracellular DNA Release and Its Biological Roles in Microbial Communities.
    Ibáñez de Aldecoa AL; Zafra O; González-Pastor JE
    Front Microbiol; 2017; 8():1390. PubMed ID: 28798731
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Hypothetical protein Avin_16040 as the S-layer protein of Azotobacter vinelandii and its involvement in plant root surface attachment.
    Liew PW; Jong BC; Najimudin N
    Appl Environ Microbiol; 2015 Nov; 81(21):7484-95. PubMed ID: 26276116
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Identification and characterization of an Azotobacter vinelandii type I secretion system responsible for export of the AlgE-type mannuronan C-5-epimerases.
    Gimmestad M; Steigedal M; Ertesvåg H; Moreno S; Christensen BE; Espín G; Valla S
    J Bacteriol; 2006 Aug; 188(15):5551-60. PubMed ID: 16855245
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Bacterial gene transfer by natural genetic transformation in the environment.
    Lorenz MG; Wackernagel W
    Microbiol Rev; 1994 Sep; 58(3):563-602. PubMed ID: 7968924
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Transformation of Azotobacter vinelandii with plasmids RP4 (IncP-1 group) and RSF1010 (IncQ group).
    David M; Tronchet M; Dénarié J
    J Bacteriol; 1981 Jun; 146(3):1154-7. PubMed ID: 7016829
    [TBL] [Abstract][Full Text] [Related]  

  • 117. D-(-)-poly-beta-hydroxybutyrate in membranes of genetically competent bacteria.
    Reusch RN; Sadoff HL
    J Bacteriol; 1983 Nov; 156(2):778-88. PubMed ID: 6415039
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Characterization of Azotobacter vinelandii deoxyribonucleic acid and folded chromosomes.
    Sadoff HL; Shimel B; Ellis S
    J Bacteriol; 1979 Jun; 138(3):871-7. PubMed ID: 378943
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Control of transformation competence in Azotobacter vinelandii by nitrogen catabolite derepression.
    Page WJ; Sadoff HL
    J Bacteriol; 1976 Mar; 125(3):1088-95. PubMed ID: 176141
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Transformation of Azotobacter vinelandii strains unable to fix nitrogen with Rhizobium spp. DNA.
    Page WJ
    Can J Microbiol; 1978 Mar; 24(3):209-14. PubMed ID: 647476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.