BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 17614116)

  • 1. Formation of chlorination by-products in waters with low SUVA--correlations with SUVA and differential UV spectroscopy.
    Ates N; Kitis M; Yetis U
    Water Res; 2007 Oct; 41(18):4139-48. PubMed ID: 17614116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence of disinfection by-products in low DOC surface waters in Turkey.
    Ates N; Kaplan SS; Sahinkaya E; Kitis M; Dilek FB; Yetis U
    J Hazard Mater; 2007 Apr; 142(1-2):526-34. PubMed ID: 17034942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination.
    Chu W; Gao N; Yin D; Krasner SW
    J Hazard Mater; 2013 Sep; 260():806-12. PubMed ID: 23856310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The reactivity of natural organic matter to disinfection by-products formation and its relation to specific ultraviolet absorbance.
    Kitis M; Karanfil T; Kilduff JE; Wigton A
    Water Sci Technol; 2001; 43(2):9-16. PubMed ID: 11380210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DPB formation in breakpoint chlorination of wastewater.
    Yang X; Shang C; Huang JC
    Water Res; 2005 Nov; 39(19):4755-4767. PubMed ID: 16288796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between SUVA and DBP formation during chlorination and chloramination of NOM fractions from different sources.
    Hua G; Reckhow DA; Abusallout I
    Chemosphere; 2015 Jul; 130():82-9. PubMed ID: 25862949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The formation of halogen-specific TOX from chlorination and chloramination of natural organic matter isolates.
    Kristiana I; Gallard H; Joll C; Croué JP
    Water Res; 2009 Sep; 43(17):4177-86. PubMed ID: 19616274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the formation of nitrogen-containing disinfection by-products in chlorinated water using absorbance and fluorescence indexes.
    Roccaro P; Vagliasindi FG; Korshin GV
    Water Sci Technol; 2011; 63(1):40-4. PubMed ID: 21245551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential absorbance study of effects of temperature on chlorine consumption and formation of disinfection by-products in chlorinated water.
    Roccaro P; Chang HS; Vagliasindi FG; Korshin GV
    Water Res; 2008 Apr; 42(8-9):1879-88. PubMed ID: 18063005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The removal of disinfection by-product precursors from water with ceramic membranes.
    Harman BI; Koseoglu H; Yigit NO; Sayilgan E; Beyhan M; Kitis M
    Water Sci Technol; 2010; 62(3):547-55. PubMed ID: 20706002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence of THMs and HAAs in experimental chlorinated waters of the Quebec City area (Canada).
    Sérodes JB; Rodriguez MJ; Li H; Bouchard C
    Chemosphere; 2003 Apr; 51(4):253-63. PubMed ID: 12604077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of selected anion exchange resins for the treatment of a high DOC content surface water.
    Humbert H; Gallard H; Suty H; Croué JP
    Water Res; 2005 May; 39(9):1699-708. PubMed ID: 15899268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of aquatic humic substances to DBPs formation in advanced treatment processes for conventionally treated water.
    Kim HC; Yu MJ
    J Hazard Mater; 2007 May; 143(1-2):486-93. PubMed ID: 17092645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absorbance spectroscopy-based examination of effects of coagulation on the reactivity of fractions of natural organic matter with varying apparent molecular weights.
    Korshin G; Chow CW; Fabris R; Drikas M
    Water Res; 2009 Apr; 43(6):1541-8. PubMed ID: 19131089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of operating conditions on THMs and HAAs formation during wastewater chlorination.
    Sun YX; Wu QY; Hu HY; Tian J
    J Hazard Mater; 2009 Sep; 168(2-3):1290-5. PubMed ID: 19349115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. THM, HAA and CNCl formation from UV irradiation and chlor(am)ination of selected organic waters.
    Liu W; Cheung LM; Yang X; Shang C
    Water Res; 2006 Jun; 40(10):2033-43. PubMed ID: 16678880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of natural organic matter in conventional water treatment processes for selection of treatment processes focused on DBPs control.
    Kim HC; Yu MJ
    Water Res; 2005 Nov; 39(19):4779-89. PubMed ID: 16253305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential vs. absolute UV absorbance approaches in studying NOM reactivity in DBPs formation: comparison and applicability.
    Roccaro P; Vagliasindi FG
    Water Res; 2009 Feb; 43(3):744-50. PubMed ID: 19042001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing reactivity of dissolved organic matter for disinfection by-product formation using XAD-8 resin adsorption and ultrafiltration fractionation.
    Kitis M; Karanfil T; Wigton A; Kilduff JE
    Water Res; 2002 Sep; 36(15):3834-48. PubMed ID: 12369529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water.
    Lu J; Zhang T; Ma J; Chen Z
    J Hazard Mater; 2009 Feb; 162(1):140-5. PubMed ID: 18585856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.