These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 17614520)

  • 1. The dependence of time-domain speed-of-sound measurements on center frequency, bandwidth, and transit-time marker in human calcaneus in vitro.
    Wear KA
    J Acoust Soc Am; 2007 Jul; 122(1):636-44. PubMed ID: 17614520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for improved standardization of in vivo calcaneal time-domain speed-of-sound measurements.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1473-9. PubMed ID: 18986936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A numerical method to predict the effects of frequency-dependent attenuation and dispersion on speed of sound estimates in cancellous bone.
    Wear KA
    J Acoust Soc Am; 2001 Mar; 109(3):1213-8. PubMed ID: 11303934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements of acoustic dispersion on calcaneus using spilt spectrum processing technique.
    Chen PJ; Chen T
    Med Eng Phys; 2006 Mar; 28(2):187-93. PubMed ID: 15939657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of frequency-dependent attenuation and dispersion on sound speed measurements: applications in human trabecular bone.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):265-73. PubMed ID: 18238539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurements of phase velocity and group velocity in human calcaneus.
    Wear KA
    Ultrasound Med Biol; 2000 May; 26(4):641-6. PubMed ID: 10856627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic attenuation in human calcaneus from 0.2 to 1.7 MHz.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Mar; 48(2):602-8. PubMed ID: 11370374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of Interaction of Ultrasound With Cancellous Bone: A Review.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Mar; 67(3):454-482. PubMed ID: 31634127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Ultrasound assessment of the calcaneus: for the time being a conservative approach in clinical use; the ERGO study (Erasmus Rotterdam Health and the Elderly)].
    van Daele PL; Burger H; Hofman A; Grobbee DE; Birkenhäger JC; Pols HA
    Ned Tijdschr Geneeskd; 1996 Jul; 140(27):1398-402. PubMed ID: 8766682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic measurement of the calcaneus in Polish normal and osteoporotic women and men.
    Pluskiewicz W; Drozdzowska B
    Bone; 1999 Jun; 24(6):611-7. PubMed ID: 10375204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear attenuation and dispersion in human calcaneus in vitro: statistical validation and relationships to microarchitecture.
    Wear KA
    J Acoust Soc Am; 2015 Mar; 137(3):1126-33. PubMed ID: 25786928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound measurements at the calcaneus in men: differences between healthy and fractured persons and the influence of age and anthropometric features on ultrasound parameters.
    Pluskiewicz W; Drozdzowska B
    Osteoporos Int; 1999; 10(1):47-51. PubMed ID: 10501779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound analyses of the calcaneus predict relative risk of the presence of at least one vertebral fracture and reflect different physical qualities of bone in different regions of the skeleton.
    Pfeifer M; Pollaehne W; Minne HW
    Horm Metab Res; 1997 Feb; 29(2):76-9. PubMed ID: 9105904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative ultrasound imaging at the calcaneus using an automatic region of interest.
    Fournier B; Chappard C; Roux C; Berger G; Laugier P
    Osteoporos Int; 1997; 7(4):363-9. PubMed ID: 9373572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency dependence of average phase shift from human calcaneus in vitro.
    Wear KA
    J Acoust Soc Am; 2009 Dec; 126(6):3291-300. PubMed ID: 20000943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasound measurements in the calcaneus: precision and its relation with bone mineral density of the heel, hip, and lumbar spine.
    Graafmans WC; Van Lingen A; Ooms ME; Bezemer PD; Lips P
    Bone; 1996 Aug; 19(2):97-100. PubMed ID: 8853851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of frequency-dependent attenuation and velocity dispersion on in vitro ultrasound velocity measurements in intact human femur specimens.
    Haïat G; Padilla F; Cleveland RO; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jan; 53(1):39-51. PubMed ID: 16471431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound measurements for the prediction of osteoporotic fractures in elderly people.
    Pluijm SM; Graafmans WC; Bouter LM; Lips P
    Osteoporos Int; 1999; 9(6):550-6. PubMed ID: 10624464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative ultrasound imaging of the calcaneus: precision and variations during a 120-Day bed rest.
    Laugier P; Novikov V; Elmann-Larsen B; Berger G
    Calcif Tissue Int; 2000 Jan; 66(1):16-21. PubMed ID: 10602839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Group velocity, phase velocity, and dispersion in human calcaneus in vivo.
    Wear KA
    J Acoust Soc Am; 2007 Apr; 121(4):2431-7. PubMed ID: 17471754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.