These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
394 related articles for article (PubMed ID: 17614623)
1. On high explosive launching of projectiles for shock physics experiments. Swift DC; Forest CA; Clark DA; Buttler WT; Marr-Lyon M; Rightley P Rev Sci Instrum; 2007 Jun; 78(6):063904. PubMed ID: 17614623 [TBL] [Abstract][Full Text] [Related]
2. Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles. Weinberg K; Ortiz M Biomech Model Mechanobiol; 2009 Aug; 8(4):285-99. PubMed ID: 18807077 [TBL] [Abstract][Full Text] [Related]
4. Simulation of blast-induced early-time intracranial wave physics leading to traumatic brain injury. Taylor PA; Ford CC J Biomech Eng; 2009 Jun; 131(6):061007. PubMed ID: 19449961 [TBL] [Abstract][Full Text] [Related]
5. Characteristics and measurement of supersonic projectile shock waves by a 32-microphone ring array. Chang H; Wu YC; Tsung TT Rev Sci Instrum; 2011 Aug; 82(8):084902. PubMed ID: 21895266 [TBL] [Abstract][Full Text] [Related]
6. Experimental study of hydraulic ram effects on a liquid storage tank: Analysis of overpressure and cavitation induced by a high-speed projectile. Lecysyn N; Bony-Dandrieux A; Aprin L; Heymes F; Slangen P; Dusserre G; Munier L; Le Gallic C J Hazard Mater; 2010 Jun; 178(1-3):635-43. PubMed ID: 20189299 [TBL] [Abstract][Full Text] [Related]
7. The techniques of metallic foil electrically exploding driving hypervelocity flyer to more than 10 km/s for shock wave physics experiments. Wang G; He J; Zhao J; Tan F; Sun C; Mo J; Xong X; Wu G Rev Sci Instrum; 2011 Sep; 82(9):095105. PubMed ID: 21974617 [TBL] [Abstract][Full Text] [Related]
8. Tensile bond strength of an adhesive resin cement to different alloys having various surface treatments. Abreu A; Loza MA; Elias A; Mukhopadhyay S; Looney S; Rueggeberg FA J Prosthet Dent; 2009 Feb; 101(2):107-18. PubMed ID: 19167535 [TBL] [Abstract][Full Text] [Related]
9. Dynamic diamond anvil cell (dDAC): a novel device for studying the dynamic-pressure properties of materials. Evans WJ; Yoo CS; Lee GW; Cynn H; Lipp MJ; Visbeck K Rev Sci Instrum; 2007 Jul; 78(7):073904. PubMed ID: 17672770 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of molecular impacts on soft materials: from fullerenes to organic nanodrops. Delcorte A; Garrison BJ; Hamraoui K Anal Chem; 2009 Aug; 81(16):6676-86. PubMed ID: 20337378 [TBL] [Abstract][Full Text] [Related]
11. Experimentally validated 3-D simulation of shock waves generated by dense explosives in confined complex geometries. Rigas F; Sklavounos S J Hazard Mater; 2005 May; 121(1-3):23-30. PubMed ID: 15885402 [TBL] [Abstract][Full Text] [Related]
12. Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications. Paisley DL; Luo SN; Greenfield SR; Koskelo AC Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023902. PubMed ID: 18315311 [TBL] [Abstract][Full Text] [Related]
13. High velocity flyer plates launched by magnetic pressure on pulsed power generator CQ-4 and applied in shock Hugoniot experiments. Zhang X; Wang G; Zhao J; Tan F; Luo B; Sun C Rev Sci Instrum; 2014 May; 85(5):055110. PubMed ID: 24880418 [TBL] [Abstract][Full Text] [Related]
14. Acoustic field of a ballistic shock wave therapy device. Cleveland RO; Chitnis PV; McClure SR Ultrasound Med Biol; 2007 Aug; 33(8):1327-35. PubMed ID: 17467154 [TBL] [Abstract][Full Text] [Related]
15. Corner turning and shock desensitization experiments plus numerical modeling of detonation waves in the triaminotrinitrobenzene based explosive LX-17. Tarver CM J Phys Chem A; 2010 Mar; 114(8):2727-36. PubMed ID: 20141191 [TBL] [Abstract][Full Text] [Related]
16. The influence of veneering porcelain thickness of all-ceramic and metal ceramic crowns on failure resistance after cyclic loading. Shirakura A; Lee H; Geminiani A; Ercoli C; Feng C J Prosthet Dent; 2009 Feb; 101(2):119-27. PubMed ID: 19167536 [TBL] [Abstract][Full Text] [Related]
18. Atomistic simulations of shock-induced alloying reactions in Ni/Al nanolaminates. Zhao S; Germann TC; Strachan A J Chem Phys; 2006 Oct; 125(16):164707. PubMed ID: 17092120 [TBL] [Abstract][Full Text] [Related]
19. Nanosecond freezing of water under multiple shock wave compression: continuum modeling and wave profile measurements. Dolan DH; Johnson JN; Gupta YM J Chem Phys; 2005 Aug; 123(6):64702. PubMed ID: 16122330 [TBL] [Abstract][Full Text] [Related]
20. Testing safety eyewear: how frame and lens design affect lens retention. McMahon JM; Beckerman S Optometry; 2007 Feb; 78(2):78-87. PubMed ID: 17258162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]