BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 17614722)

  • 1. Instrumentation as a source of variability in the application of fluorescence spectroscopic devices for detecting cervical neoplasia.
    Pikkula BM; Shuhatovich O; Price RL; Serachitopol DM; Follen M; McKinnon N; MacAulay C; Richards-Kortum R; Lee JS; Atkinson EN; Cox DD
    J Biomed Opt; 2007; 12(3):034014. PubMed ID: 17614722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence and reflectance device variability throughout the progression of a phase II clinical trial to detect and screen for cervical neoplasia using a fiber optic probe.
    Freeberg JA; Serachitopol DM; McKinnon N; Price R; Atkinson EN; Cox DD; MacAulay C; Richards-Kortum R; Follen M; Pikkula B
    J Biomed Opt; 2007; 12(3):034015. PubMed ID: 17614723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and preliminary analysis of a study to assess intra-device and inter-device variability of fluorescence spectroscopy instruments for detecting cervical neoplasia.
    Lee JS; Shuhatovich O; Price R; Pikkula B; Follen M; McKinnon N; Macaulay C; Knight B; Richards-Kortum R; Cox DD
    Gynecol Oncol; 2005 Dec; 99(3 Suppl 1):S98-111. PubMed ID: 16188298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibration standards for multicenter clinical trials of fluorescence spectroscopy for in vivo diagnosis.
    MarĂ­n NM; MacKinnon N; MacAulay C; Chang SK; Atkinson EN; Cox D; Serachitopol D; Pikkula B; Follen M; Richards-Kortum R
    J Biomed Opt; 2006; 11(1):014010. PubMed ID: 16526887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fiber-optic fluorescence correlation spectrometer.
    Garai K; Muralidhar M; Maiti S
    Appl Opt; 2006 Oct; 45(28):7538-42. PubMed ID: 16983444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CCD based fiber-optic spectrometer detection.
    Kapoor R
    Methods Mol Biol; 2009; 503():435-45. PubMed ID: 19151957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ pressure calibration for piston cylinder cells via ruby fluorescence with fiber optics.
    Koyama-Nakazawa K; Koeda M; Hedo M; Uwatoko Y
    Rev Sci Instrum; 2007 Jun; 78(6):066109. PubMed ID: 17614653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Planar fiber-optic chips for broadband spectroscopic interrogation of thin films.
    Beam BM; Shallcross RC; Jang J; Armstrong NR; Mendes SB
    Appl Spectrosc; 2007 Jun; 61(6):585-92. PubMed ID: 17650368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of probe pressure on cervical fluorescence spectroscopy measurements.
    Nath A; Rivoire K; Chang S; Cox D; Atkinson EN; Follen M; Richards-Kortum R
    J Biomed Opt; 2004; 9(3):523-33. PubMed ID: 15189090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe.
    Schwarz RA; Gao W; Daye D; Williams MD; Richards-Kortum R; Gillenwater AM
    Appl Opt; 2008 Feb; 47(6):825-34. PubMed ID: 18288232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements.
    Kim A; Khurana M; Moriyama Y; Wilson BC
    J Biomed Opt; 2010; 15(6):067006. PubMed ID: 21198210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of evanescent wave all-fiber immunosensor for environmental water analysis.
    Long F; He M; Shi HC; Zhu AN
    Biosens Bioelectron; 2008 Feb; 23(7):952-8. PubMed ID: 17980575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fiber optic probes for biomedical optical spectroscopy.
    Utzinger U; Richards-Kortum RR
    J Biomed Opt; 2003 Jan; 8(1):121-47. PubMed ID: 12542388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation.
    Zhu C; Liu Q; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):237-47. PubMed ID: 12683849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple-fiber probe design for fluorescence spectroscopy in tissue.
    Pfefer TJ; Schomacker KT; Ediger MN; Nishioka NS
    Appl Opt; 2002 Aug; 41(22):4712-21. PubMed ID: 12153108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced fluorescence sensing using microstructured optical fibers: a comparison of forward and backward collection modes.
    Afshar V S; Ruan Y; Warren-Smith SC; Monro TM
    Opt Lett; 2008 Jul; 33(13):1473-5. PubMed ID: 18594669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-photon fluorescence correlation spectroscopy through a dual-clad optical fiber.
    Chang YC; Ye JY; Thomas T; Chen Y; Baker JR; Norris TB
    Opt Express; 2008 Aug; 16(17):12640-9. PubMed ID: 18711501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo.
    Mahadevan-Jansen A; Mitchell MF; Ramanujam N; Utzinger U; Richards-Kortum R
    Photochem Photobiol; 1998 Sep; 68(3):427-31. PubMed ID: 9747597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of fiber-optic probe design and probe-to-target distance on diffuse reflectance measurements of turbid media: an experimental and computational study at 337 nm.
    Papaioannou T; Preyer NW; Fang Q; Brightwell A; Carnohan M; Cottone G; Ross R; Jones LR; Marcu L
    Appl Opt; 2004 May; 43(14):2846-60. PubMed ID: 15143808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward instrument-independent quantitative measurement of fluorescence intensity in fiber-optic spectrometer systems.
    Zhao J; Lui H; McLean DI; Zeng H
    Appl Opt; 2007 Oct; 46(29):7132-40. PubMed ID: 17932520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.