These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 17614723)
1. Fluorescence and reflectance device variability throughout the progression of a phase II clinical trial to detect and screen for cervical neoplasia using a fiber optic probe. Freeberg JA; Serachitopol DM; McKinnon N; Price R; Atkinson EN; Cox DD; MacAulay C; Richards-Kortum R; Follen M; Pikkula B J Biomed Opt; 2007; 12(3):034015. PubMed ID: 17614723 [TBL] [Abstract][Full Text] [Related]
2. Instrumentation as a source of variability in the application of fluorescence spectroscopic devices for detecting cervical neoplasia. Pikkula BM; Shuhatovich O; Price RL; Serachitopol DM; Follen M; McKinnon N; MacAulay C; Richards-Kortum R; Lee JS; Atkinson EN; Cox DD J Biomed Opt; 2007; 12(3):034014. PubMed ID: 17614722 [TBL] [Abstract][Full Text] [Related]
3. Effect of probe pressure on cervical fluorescence spectroscopy measurements. Nath A; Rivoire K; Chang S; Cox D; Atkinson EN; Follen M; Richards-Kortum R J Biomed Opt; 2004; 9(3):523-33. PubMed ID: 15189090 [TBL] [Abstract][Full Text] [Related]
4. The performance of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia; point probe versus multispectral approaches. Freeberg JA; Benedet JL; MacAulay C; West LA; Follen M Gynecol Oncol; 2007 Oct; 107(1 Suppl 1):S248-55. PubMed ID: 17825399 [TBL] [Abstract][Full Text] [Related]
5. Effects of biographical variables on cervical fluorescence emission spectra. Brookner C; Utzinger U; Follen M; Richards-Kortum R; Cox D; Atkinson EN J Biomed Opt; 2003 Jul; 8(3):479-83. PubMed ID: 12880354 [TBL] [Abstract][Full Text] [Related]
6. Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe. Schwarz RA; Gao W; Daye D; Williams MD; Richards-Kortum R; Gillenwater AM Appl Opt; 2008 Feb; 47(6):825-34. PubMed ID: 18288232 [TBL] [Abstract][Full Text] [Related]
7. Sources of variability in fluorescence spectroscopic measurements in a Phase II clinical trial of 850 patients. Lee JS; Follen M; MacAulay C; Pikkula B; Serachitopol D; Price R; Cox D Gynecol Oncol; 2007 Oct; 107(1 Suppl 1):S260-9. PubMed ID: 17825398 [TBL] [Abstract][Full Text] [Related]
8. Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements. Arifler D; MacAulay C; Follen M; Richards-Kortum R J Biomed Opt; 2006; 11(6):064027. PubMed ID: 17212550 [TBL] [Abstract][Full Text] [Related]
9. The clinical effectiveness of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia: an analysis by phase of trial design. Freeberg JA; Benedet JL; West LA; Atkinson EN; MacAulay C; Follen M Gynecol Oncol; 2007 Oct; 107(1 Suppl 1):S270-80. PubMed ID: 17825882 [TBL] [Abstract][Full Text] [Related]
10. Design and preliminary analysis of a study to assess intra-device and inter-device variability of fluorescence spectroscopy instruments for detecting cervical neoplasia. Lee JS; Shuhatovich O; Price R; Pikkula B; Follen M; McKinnon N; Macaulay C; Knight B; Richards-Kortum R; Cox DD Gynecol Oncol; 2005 Dec; 99(3 Suppl 1):S98-111. PubMed ID: 16188298 [TBL] [Abstract][Full Text] [Related]
11. Reflectance spectroscopy for in vivo detection of cervical precancer. Mirabal YN; Chang SK; Atkinson EN; Malpica A; Follen M; Richards-Kortum R J Biomed Opt; 2002 Oct; 7(4):587-94. PubMed ID: 12421125 [TBL] [Abstract][Full Text] [Related]
13. A pilot study for a screening trial of cervical fluorescence spectroscopy. Nath A; Rivoire K; Chang S; West L; Cantor SB; Basen-Engquist K; Adler-Storthz K; Cox DD; Atkinson EN; Staerkel G; MacAulay C; Richards-Kortum R; Follen M Int J Gynecol Cancer; 2004; 14(6):1097-107. PubMed ID: 15571615 [TBL] [Abstract][Full Text] [Related]
14. Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer. Chang SK; Mirabal YN; Atkinson EN; Cox D; Malpica A; Follen M; Richards-Kortum R J Biomed Opt; 2005; 10(2):024031. PubMed ID: 15910104 [TBL] [Abstract][Full Text] [Related]
15. Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements. Kim A; Khurana M; Moriyama Y; Wilson BC J Biomed Opt; 2010; 15(6):067006. PubMed ID: 21198210 [TBL] [Abstract][Full Text] [Related]
16. Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation. Zhu C; Liu Q; Ramanujam N J Biomed Opt; 2003 Apr; 8(2):237-47. PubMed ID: 12683849 [TBL] [Abstract][Full Text] [Related]
17. Age and FSH effects in fluorescence spectra from the cervix: an exploratory analysis. Atkinson EN Gynecol Oncol; 2005 Dec; 99(3 Suppl 1):S95-7. PubMed ID: 16143375 [TBL] [Abstract][Full Text] [Related]
18. Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements. Sun J; Fu K; Wang A; Lin AW; Utzinger U; Drezek R Appl Opt; 2006 Nov; 45(31):8152-62. PubMed ID: 17068558 [TBL] [Abstract][Full Text] [Related]
19. Effects of fiber-optic probe design and probe-to-target distance on diffuse reflectance measurements of turbid media: an experimental and computational study at 337 nm. Papaioannou T; Preyer NW; Fang Q; Brightwell A; Carnohan M; Cottone G; Ross R; Jones LR; Marcu L Appl Opt; 2004 May; 43(14):2846-60. PubMed ID: 15143808 [TBL] [Abstract][Full Text] [Related]
20. Fiber-optic fluorescence correlation spectrometer. Garai K; Muralidhar M; Maiti S Appl Opt; 2006 Oct; 45(28):7538-42. PubMed ID: 16983444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]