BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 17614817)

  • 1. Dendritic cells and myeloid leukaemias: plasticity and commitment in cell differentiation.
    Rasaiyaah J; Yong K; Katz DR; Kellam P; Chain BM
    Br J Haematol; 2007 Aug; 138(3):281-90. PubMed ID: 17614817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constitutively active STAT5b induces cytokine-independent growth of the acute myeloid leukemia-derived MUTZ-3 cell line and accelerates its differentiation into mature dendritic cells.
    Bontkes HJ; Ruizendaal JJ; Kramer D; Santegoets SJ; Scheper RJ; de Gruijl TD; Meijer CJ; Hooijberg E
    J Immunother; 2006; 29(2):188-200. PubMed ID: 16531819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human and murine model cell lines for dendritic cell biology evaluated.
    van Helden SF; van Leeuwen FN; Figdor CG
    Immunol Lett; 2008 May; 117(2):191-7. PubMed ID: 18384885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dendritic cell-based immunotherapy in myeloid leukaemia: translating fundamental mechanisms into clinical applications.
    van de Loosdrecht AA; van den Ancker W; Houtenbos I; Ossenkoppele GJ; Westers TM
    Handb Exp Pharmacol; 2009; (188):319-48. PubMed ID: 19031033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dendritic cell-based immunotherapy in acute and chronic myeloid leukaemia.
    Westers TM; Ossenkoppele GJ; van de Loosdrecht AA
    Biomed Pharmacother; 2007 Jul; 61(6):306-14. PubMed ID: 17368821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human dendritic cell line models for DC differentiation and clinical DC vaccination studies.
    Santegoets SJ; van den Eertwegh AJ; van de Loosdrecht AA; Scheper RJ; de Gruijl TD
    J Leukoc Biol; 2008 Dec; 84(6):1364-73. PubMed ID: 18664532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dendritic cells from bench to bedside and back.
    Adema GJ
    Immunol Lett; 2009 Feb; 122(2):128-30. PubMed ID: 19121337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The biological characteristics of dendritic cells derived in vitro from myelogeneous leukemia cells and healthy donor cells.
    Tong XM; Yao HP; Qian WB; Zhu LF; Fu ZH; Huang ZL; Jin J
    Int J Lab Hematol; 2008 Oct; 30(5):372-81. PubMed ID: 18205840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IFN-alpha in the generation of dendritic cells for cancer immunotherapy.
    Santini SM; Lapenta C; Santodonato L; D'Agostino G; Belardelli F; Ferrantini M
    Handb Exp Pharmacol; 2009; (188):295-317. PubMed ID: 19031032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking innate to adaptive immunity through dendritic cells.
    Steinman RM
    Novartis Found Symp; 2006; 279():101-9; discussion 109-13, 216-9. PubMed ID: 17278389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacteriophages support anti-tumor response initiated by DC-based vaccine against murine transplantable colon carcinoma.
    Pajtasz-Piasecka E; Rossowska J; Duś D; Weber-Dabrowska B; Zabłocka A; Górski A
    Immunol Lett; 2008 Feb; 116(1):24-32. PubMed ID: 18166233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dendritic cell subtypes and in vitro generation of dendritic cells.
    Jacobs B; Wuttke M; Papewalis C; Seissler J; Schott M
    Horm Metab Res; 2008 Feb; 40(2):99-107. PubMed ID: 18283627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can leukemia-derived dendritic cells generate antileukemia immunity?
    Rosenblatt J; Avigan D
    Expert Rev Vaccines; 2006 Aug; 5(4):467-72. PubMed ID: 16989627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interferon-alpha (IFN-alpha)-conditioned DC preferentially stimulate type-1 and limit Treg-type in vitro T-cell responses from RCC patients.
    Gigante M; Mandic M; Wesa AK; Cavalcanti E; Dambrosio M; Mancini V; Battaglia M; Gesualdo L; Storkus WJ; Ranieri E
    J Immunother; 2008 Apr; 31(3):254-62. PubMed ID: 18317362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dendritic cell vaccines in acute leukaemia.
    Duncan C; Roddie H
    Best Pract Res Clin Haematol; 2008 Sep; 21(3):521-41. PubMed ID: 18790453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Innate Valpha14(+) natural killer T cells mature dendritic cells, leading to strong adaptive immunity.
    Fujii S; Shimizu K; Hemmi H; Steinman RM
    Immunol Rev; 2007 Dec; 220():183-98. PubMed ID: 17979847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autologous dendritic cells loaded with apoptotic tumor cells induce T cell-mediated immune responses against breast cancer in vitro.
    Delirezh N; Moazzeni SM; Shokri F; Shokrgozar MA; Atri M; Kokhaei P
    Cell Immunol; 2009; 257(1-2):23-31. PubMed ID: 19306994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of dendritic cell-based vaccine potency by anti-apoptotic siRNAs targeting key pro-apoptotic proteins in cytotoxic CD8(+) T cell-mediated cell death.
    Kim JH; Kang TH; Noh KH; Bae HC; Kim SH; Yoo YD; Seong SY; Kim TW
    Immunol Lett; 2009 Jan; 122(1):58-67. PubMed ID: 19135479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toll-like receptor-dependent activation of antigen-presenting cells affects adaptive immunity to Helicobacter pylori.
    Rad R; Brenner L; Krug A; Voland P; Mages J; Lang R; Schwendy S; Reindl W; Dossumbekova A; Ballhorn W; Wagner H; Schmid RM; Bauer S; Prinz C
    Gastroenterology; 2007 Jul; 133(1):150-163.e3. PubMed ID: 17631139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation of human embryonic stem cells into immunostimulatory dendritic cells under feeder-free culture conditions.
    Su Z; Frye C; Bae KM; Kelley V; Vieweg J
    Clin Cancer Res; 2008 Oct; 14(19):6207-17. PubMed ID: 18829500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.