These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 17614896)

  • 1. Annotating ebony on the fly.
    Kohn MH; Wittkopp PJ
    Mol Ecol; 2007 Jul; 16(14):2831-3. PubMed ID: 17614896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergent enhancer haplotype of ebony on inversion In(3R)Payne associated with pigmentation variation in a tropical population of Drosophila melanogaster.
    Takahashi A; Takano-Shimizu T
    Mol Ecol; 2011 Oct; 20(20):4277-87. PubMed ID: 21914015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural variation of ebony gene controlling thoracic pigmentation in Drosophila melanogaster.
    Takahashi A; Takahashi K; Ueda R; Takano-Shimizu T
    Genetics; 2007 Oct; 177(2):1233-7. PubMed ID: 17660557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The genetic basis of adaptive pigmentation variation in Drosophila melanogaster.
    Pool JE; Aquadro CF
    Mol Ecol; 2007 Jul; 16(14):2844-51. PubMed ID: 17614900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex patterns of cis-regulatory polymorphisms in ebony underlie standing pigmentation variation in Drosophila melanogaster.
    Miyagi R; Akiyama N; Osada N; Takahashi A
    Mol Ecol; 2015 Dec; 24(23):5829-41. PubMed ID: 26503353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The molecular genetics of clinal variation: a case study of ebony and thoracic trident pigmentation in Drosophila melanogaster from eastern Australia.
    Telonis-Scott M; Hoffmann AA; Sgrò CM
    Mol Ecol; 2011 May; 20(10):2100-10. PubMed ID: 21466604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity and coexpression of Drosophila black with ebony in fly optic lobes reveals putative cooperative tasks in vision that evade electroretinographic detection.
    Ziegler AB; Brüsselbach F; Hovemann BT
    J Comp Neurol; 2013 Apr; 521(6):1207-24. PubMed ID: 23124681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Architecture of Abdominal Pigmentation in Drosophila melanogaster.
    Dembeck LM; Huang W; Magwire MM; Lawrence F; Lyman RF; Mackay TF
    PLoS Genet; 2015 May; 11(5):e1005163. PubMed ID: 25933381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotypic Plasticity through Transcriptional Regulation of the Evolutionary Hotspot Gene tan in Drosophila melanogaster.
    Gibert JM; Mouchel-Vielh E; De Castro S; Peronnet F
    PLoS Genet; 2016 Aug; 12(8):e1006218. PubMed ID: 27508387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing
    Telonis-Scott M; Hoffmann AA
    Front Physiol; 2018; 9():822. PubMed ID: 30042686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns.
    Wittkopp PJ; True JR; Carroll SB
    Development; 2002 Apr; 129(8):1849-58. PubMed ID: 11934851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraspecific polymorphism to interspecific divergence: genetics of pigmentation in Drosophila.
    Wittkopp PJ; Stewart EE; Arnold LL; Neidert AH; Haerum BK; Thompson EM; Akhras S; Smith-Winberry G; Shefner L
    Science; 2009 Oct; 326(5952):540-4. PubMed ID: 19900891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic Changes to a Transcriptional Silencer Element Confers Phenotypic Diversity within and between Drosophila Species.
    Johnson WC; Ordway AJ; Watada M; Pruitt JN; Williams TM; Rebeiz M
    PLoS Genet; 2015 Jun; 11(6):e1005279. PubMed ID: 26115430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the epidermis enhancer element in positive and negative transcriptional regulation of ebony in Drosophila melanogaster.
    Akiyama N; Sato S; Tanaka KM; Sakai T; Takahashi A
    G3 (Bethesda); 2022 Mar; 12(3):. PubMed ID: 35100378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Screening of CRISPR/Cas9-Induced Events in Drosophila Using a Co-CRISPR Strategy.
    Kane NS; Vora M; Varre KJ; Padgett RW
    G3 (Bethesda); 2017 Jan; 7(1):87-93. PubMed ID: 27793971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The expansion of body coloration involves coordinated evolution in cis and trans within the pigmentation regulatory network of Drosophila prostipennis.
    Ordway AJ; Hancuch KN; Johnson W; Wiliams TM; Rebeiz M
    Dev Biol; 2014 Aug; 392(2):431-40. PubMed ID: 24907418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. tan and ebony genes regulate a novel pathway for transmitter metabolism at fly photoreceptor terminals.
    Borycz J; Borycz JA; Loubani M; Meinertzhagen IA
    J Neurosci; 2002 Dec; 22(24):10549-57. PubMed ID: 12486147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pigmentation and behavior: potential association through pleiotropic genes in Drosophila.
    Takahashi A
    Genes Genet Syst; 2013; 88(3):165-74. PubMed ID: 24025245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ontogeny of color: developmental origins of divergent pigmentation in Drosophila americana and D. novamexicana.
    Cooley AM; Shefner L; McLaughlin WN; Stewart EE; Wittkopp PJ
    Evol Dev; 2012 Jul; 14(4):317-25. PubMed ID: 22765203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pleiotropic Effects of
    Massey JH; Akiyama N; Bien T; Dreisewerd K; Wittkopp PJ; Yew JY; Takahashi A
    Front Physiol; 2019; 10():518. PubMed ID: 31118901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.