These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 17615124)

  • 1. Statistics of midbrain dopamine neuron spike trains in the awake primate.
    Bayer HM; Lau B; Glimcher PW
    J Neurophysiol; 2007 Sep; 98(3):1428-39. PubMed ID: 17615124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Midbrain dopamine neurons encode a quantitative reward prediction error signal.
    Bayer HM; Glimcher PW
    Neuron; 2005 Jul; 47(1):129-41. PubMed ID: 15996553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of unpredictability for reward responses in primate dopamine neurons.
    Mirenowicz J; Schultz W
    J Neurophysiol; 1994 Aug; 72(2):1024-7. PubMed ID: 7983508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task.
    Schultz W; Apicella P; Ljungberg T
    J Neurosci; 1993 Mar; 13(3):900-13. PubMed ID: 8441015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of bursts and pauses in spike trains.
    Ko D; Wilson CJ; Lobb CJ; Paladini CA
    J Neurosci Methods; 2012 Oct; 211(1):145-58. PubMed ID: 22939922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cost of obtaining rewards enhances the reward prediction error signal of midbrain dopamine neurons.
    Tanaka S; O'Doherty JP; Sakagami M
    Nat Commun; 2019 Aug; 10(1):3674. PubMed ID: 31417077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fixational saccade-related activity of pedunculopontine tegmental nucleus neurons in behaving monkeys.
    Okada K; Kobayashi Y
    Eur J Neurosci; 2014 Aug; 40(4):2641-51. PubMed ID: 24863483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Restraint increases dopaminergic burst firing in awake rats.
    Anstrom KK; Woodward DJ
    Neuropsychopharmacology; 2005 Oct; 30(10):1832-40. PubMed ID: 15886724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A possible role of midbrain dopamine neurons in short- and long-term adaptation of saccades to position-reward mapping.
    Takikawa Y; Kawagoe R; Hikosaka O
    J Neurophysiol; 2004 Oct; 92(4):2520-9. PubMed ID: 15163669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generating bursts (and pauses) in the dopamine midbrain neurons.
    Paladini CA; Roeper J
    Neuroscience; 2014 Dec; 282():109-21. PubMed ID: 25073045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of spontaneous activity and oscillatory spike firing in rat midbrain dopamine neurons recorded in vitro.
    Grace AA
    Synapse; 1991 Mar; 7(3):221-34. PubMed ID: 1882331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Specific Component of the Evoked Potential Mirrors Phasic Dopamine Neuron Activity during Conditioning.
    Pan WX; Dudman JT
    J Neurosci; 2015 Jul; 35(29):10451-9. PubMed ID: 26203140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons.
    Morris G; Arkadir D; Nevet A; Vaadia E; Bergman H
    Neuron; 2004 Jul; 43(1):133-43. PubMed ID: 15233923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reward prediction error computation in the pedunculopontine tegmental nucleus neurons.
    Kobayashi Y; Okada K
    Ann N Y Acad Sci; 2007 May; 1104():310-23. PubMed ID: 17344541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Axiomatic methods, dopamine and reward prediction error.
    Caplin A; Dean M
    Curr Opin Neurobiol; 2008 Apr; 18(2):197-202. PubMed ID: 18678251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Reward processing of the basal ganglia--reward function of pedunculopontine tegmental nucleus].
    Kobayashi- Y; Okada K
    Brain Nerve; 2009 Apr; 61(4):397-404. PubMed ID: 19378809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior.
    Zweifel LS; Parker JG; Lobb CJ; Rainwater A; Wall VZ; Fadok JP; Darvas M; Kim MJ; Mizumori SJ; Paladini CA; Phillips PE; Palmiter RD
    Proc Natl Acad Sci U S A; 2009 May; 106(18):7281-8. PubMed ID: 19342487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons.
    Jackson BS
    Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oscillation of interspike interval length in substantia nigra dopamine neurons: effects of nicotine and the dopaminergic D2 agonist LY 163502 on electrophysiological activity.
    Carlson JH; Foote SL
    Synapse; 1992 Jul; 11(3):229-48. PubMed ID: 1636152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tonic firing mode of midbrain dopamine neurons continuously tracks reward values changing moment-by-moment.
    Wang Y; Toyoshima O; Kunimatsu J; Yamada H; Matsumoto M
    Elife; 2021 Mar; 10():. PubMed ID: 33689680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.