BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 1761533)

  • 1. Chitin utilization by marine bacteria. Degradation and catabolism of chitin oligosaccharides by Vibrio furnissii.
    Bassler BL; Yu C; Lee YC; Roseman S
    J Biol Chem; 1991 Dec; 266(36):24276-86. PubMed ID: 1761533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitin utilization by marine bacteria. Chemotaxis to chitin oligosaccharides by Vibrio furnissii.
    Bassler BL; Gibbons PJ; Yu C; Roseman S
    J Biol Chem; 1991 Dec; 266(36):24268-75. PubMed ID: 1761532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chitin catabolic cascade in the marine bacterium Vibrio furnissii. Molecular cloning, isolation, and characterization of a periplasmic beta-N-acetylglucosaminidase.
    Keyhani NO; Roseman S
    J Biol Chem; 1996 Dec; 271(52):33425-32. PubMed ID: 8969205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chitin catabolic cascade in the marine bacterium Vibrio furnissii. Molecular cloning, isolation, and characterization of a periplasmic chitodextrinase.
    Keyhani NO; Roseman S
    J Biol Chem; 1996 Dec; 271(52):33414-24. PubMed ID: 8969204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chitin catabolism in the marine bacterium Vibrio furnissii. Identification and molecular cloning of a chitoporin.
    Keyhani NO; Li XB; Roseman S
    J Biol Chem; 2000 Oct; 275(42):33068-76. PubMed ID: 10913115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sugar transport by the marine chitinolytic bacterium Vibrio furnissii. Molecular cloning and analysis of the glucose and N-acetylglucosamine permeases.
    Bouma CL; Roseman S
    J Biol Chem; 1996 Dec; 271(52):33457-67. PubMed ID: 8969209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chitin catabolism in the marine bacterium Vibrio furnissii. Identification, molecular cloning, and characterization of A N, N'-diacetylchitobiose phosphorylase.
    Park JK; Keyhani NO; Roseman S
    J Biol Chem; 2000 Oct; 275(42):33077-83. PubMed ID: 10913116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase.
    Li X; Roseman S
    Proc Natl Acad Sci U S A; 2004 Jan; 101(2):627-31. PubMed ID: 14699052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemotaxis of the marine bacterium Vibrio furnissii to sugars. A potential mechanism for initiating the chitin catabolic cascade.
    Yu C; Bassler BL; Roseman S
    J Biol Chem; 1993 May; 268(13):9405-9. PubMed ID: 8486635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The chitin catabolic cascade in the marine bacterium Vibrio cholerae: characterization of a unique chitin oligosaccharide deacetylase.
    Li X; Wang LX; Wang X; Roseman S
    Glycobiology; 2007 Dec; 17(12):1377-87. PubMed ID: 17884842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 4-Methylumbelliferyl glycosides of N-acetyl 4-thiochito-oligosaccharides as fluorogenic substrates for chitodextrinase from Vibrio furnissii.
    Wang LX; Keyhani NO; Roseman S; Lee YC
    Glycobiology; 1997 Sep; 7(6):855-60. PubMed ID: 9376688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A structural model for (GlcNAc)
    Kitaoku Y; Fukamizo T; Kumsaoad S; Ubonbal P; Robinson RC; Suginta W
    J Biol Chem; 2021 Sep; 297(3):101071. PubMed ID: 34400168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular cloning and characterization of a novel beta-N-acetyl-D-glucosaminidase from Vibrio furnissii.
    Chitlaru E; Roseman S
    J Biol Chem; 1996 Dec; 271(52):33433-9. PubMed ID: 8969206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sugar transport by the marine chitinolytic bacterium Vibrio furnissii. Molecular cloning and analysis of the mannose/glucose permease.
    Bouma CL; Roseman S
    J Biol Chem; 1996 Dec; 271(52):33468-75. PubMed ID: 8969210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chitin catabolic cascade in the marine bacterium Vibrio furnissii. Characterization of an N,N'-diacetyl-chitobiose transport system.
    Keyhani NO; Wang LX; Lee YC; Roseman S
    J Biol Chem; 1996 Dec; 271(52):33409-13. PubMed ID: 8969203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic properties of wild-type and active site mutants of chitinase A from Vibrio carchariae, as revealed by HPLC-MS.
    Suginta W; Vongsuwan A; Songsiriritthigul C; Svasti J; Prinz H
    FEBS J; 2005 Jul; 272(13):3376-86. PubMed ID: 15978043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of glycosyl hydrolase family 3 beta-N-acetylglucosaminidases from Thermotoga maritima and Thermotoga neapolitana.
    Choi KH; Seo JY; Park KM; Park CS; Cha J
    J Biosci Bioeng; 2009 Dec; 108(6):455-9. PubMed ID: 19914575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological aspects of chitin catabolism in marine bacteria.
    Keyhani NO; Roseman S
    Biochim Biophys Acta; 1999 Dec; 1473(1):108-22. PubMed ID: 10580132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of Vibrio parahaemolyticus extracellular chitinase and chitin oligosaccharide deacetylase involved in the production of heterodisaccharide from chitin.
    Kadokura K; Rokutani A; Yamamoto M; Ikegami T; Sugita H; Itoi S; Hakamata W; Oku T; Nishio T
    Appl Microbiol Biotechnol; 2007 May; 75(2):357-65. PubMed ID: 17334758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitin Heterodisaccharide, Released from Chitin by Chitinase and Chitin Oligosaccharide Deacetylase, Enhances the Chitin-Metabolizing Ability of Vibrio parahaemolyticus.
    Hirano T; Okubo M; Tsuda H; Yokoyama M; Hakamata W; Nishio T
    J Bacteriol; 2019 Oct; 201(20):. PubMed ID: 31358611
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.