These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 17615557)

  • 1. Modeling of ferrous iron oxidation by a Leptospirillum ferrooxidans-dominated chemostat culture.
    Sundkvist JE; Gahan CS; Sandström A
    Biotechnol Bioeng; 2008 Feb; 99(2):378-89. PubMed ID: 17615557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of iron oxidation by Leptospirillum ferriphilum dominated culture at pH below one.
    Ozkaya B; Sahinkaya E; Nurmi P; Kaksonen AH; Puhakka JA
    Biotechnol Bioeng; 2007 Aug; 97(5):1121-7. PubMed ID: 17187444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic and kinetic characterization using process dynamics: acidophilic ferrous iron oxidation by Leptospirillum ferrooxidans.
    Kleerebezem R; van Loosdrecht MC
    Biotechnol Bioeng; 2008 May; 100(1):49-60. PubMed ID: 18080344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of ferrous iron oxidation by Leptospirillum bacteria in continuous cultures.
    van Scherpenzeel DA; Boon M; Ras C; Hansford GS; Heijnen JJ
    Biotechnol Prog; 1998; 14(3):425-33. PubMed ID: 9622523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of chloride on ferrous iron oxidation by a Leptospirillum ferriphilum-dominated chemostat culture.
    Gahan CS; Sundkvist JE; Dopson M; Sandström A
    Biotechnol Bioeng; 2010 Jun; 106(3):422-31. PubMed ID: 20198654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ferrous iron oxidation by foam immobilized Acidithiobacillus ferrooxidans: Experiments and modeling.
    Jaisankar S; Modak JM
    Biotechnol Prog; 2009; 25(5):1328-42. PubMed ID: 19610075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-rate ferric sulfate generation by a Leptospirillum ferriphilum-dominated biofilm and the role of jarosite in biomass retention in a fluidized-bed reactor.
    Kinnunen PH; Puhakka JA
    Biotechnol Bioeng; 2004 Mar; 85(7):697-705. PubMed ID: 14991647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of temperature on the continuous ferrous-iron oxidation kinetics of a predominantly Leptospirillum ferrooxidans culture.
    Breed AW; Dempers CJ; Searby GE; Gardner MN; Rawlings DE; Hansford GS
    Biotechnol Bioeng; 1999 Oct; 65(1):44-53. PubMed ID: 10440670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A kinetic model for biological oxidation of ferrous iron by Thiobacillus ferrooxidans.
    Nemati M; Webb C
    Biotechnol Bioeng; 1997 Mar; 53(5):478-86. PubMed ID: 18634043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-rate acidophilic ferrous iron oxidation in a biofilm airlift reactor and the role of the carrier material.
    Ebrahimi S; Fernández Morales FJ; Kleerebezem R; Heijnen JJ; van Loosdrecht MC
    Biotechnol Bioeng; 2005 May; 90(4):462-72. PubMed ID: 15772947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron speciation and iron species transformation in activated sludge membrane bioreactors.
    Wang XM; Waite TD
    Water Res; 2010 Jun; 44(11):3511-21. PubMed ID: 20399481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical model of the oxidation of ferrous iron by a biofilm of Thiobacillus ferrooxidans.
    Mesa MM; Macías M; Cantero D
    Biotechnol Prog; 2002; 18(4):679-85. PubMed ID: 12153298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an optimal medium for continuous ferrous iron oxidation by immobilized Acidothiobacillus ferrooxidans cells.
    Kim TW; Kim CJ; Chang YK; Ryu HW; Cho KS
    Biotechnol Prog; 2002; 18(4):752-9. PubMed ID: 12153309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of wall growth on the kinetic modeling of nitrite oxidation in a CSTR.
    Dokianakis SN; Kornaros M; Lyberatos G
    Biotechnol Bioeng; 2006 Mar; 93(4):718-26. PubMed ID: 16345085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical modeling of ferrous-ion oxidation rate in Acidithiobacillus ferrooxidans ATCC 23270: optimization of culture conditions through statistically designed experiments.
    Abdel-Fattah YR; Abdel-Fattah WR; Zamilpa R; Pierce JR
    Acta Microbiol Pol; 2002; 51(3):225-35. PubMed ID: 12588097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection of Leptospirillum ferrooxidans SRPCBL and development for enhanced ferric regeneration in stirred tank and airlift column reactor.
    Dave SR
    Bioresour Technol; 2008 Nov; 99(16):7803-6. PubMed ID: 18325759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-based evaluation of ferrous iron oxidation by acidophilic bacteria in chemostat and biofilm airlift reactors.
    Ebrahimi S; Faraghi N; Hosseini M
    J Ind Microbiol Biotechnol; 2015 Oct; 42(10):1363-8. PubMed ID: 26264929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acid-tolerant microaerophilic Fe(II)-oxidizing bacteria promote Fe(III)-accumulation in a fen.
    Lüdecke C; Reiche M; Eusterhues K; Nietzsche S; Küsel K
    Environ Microbiol; 2010 Oct; 12(10):2814-25. PubMed ID: 20545739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mineral and iron oxidation at low temperatures by pure and mixed cultures of acidophilic microorganisms.
    Dopson M; Halinen AK; Rahunen N; Ozkaya B; Sahinkaya E; Kaksonen AH; Lindström EB; Puhakka JA
    Biotechnol Bioeng; 2007 Aug; 97(5):1205-15. PubMed ID: 17187443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of CO2 availability on the growth, iron oxidation and CO2-fixation rates of pure cultures of Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans.
    Bryan CG; Davis-Belmar CS; van Wyk N; Fraser MK; Dew D; Rautenbach GF; Harrison ST
    Biotechnol Bioeng; 2012 Jul; 109(7):1693-703. PubMed ID: 22383083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.