BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 17615961)

  • 21. The efficiency of biological aerobic treatment of piggery wastewater to control nitrogen, phosphorus, pathogen and gas emissions.
    Béline F; Daumer ML; Loyon L; Pourcher AM; Dabert P; Guiziou F; Peu P
    Water Sci Technol; 2008; 57(12):1909-14. PubMed ID: 18587177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Free water surface wetlands for wastewater treatment in Sweden: nitrogen and phosphorus removal.
    Andersson JL; Kallner Bastviken S; Tonderski KS
    Water Sci Technol; 2005; 51(9):39-46. PubMed ID: 16042241
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of chemical precipitation for piggery wastewater treatment.
    Lee SH; Iamchaturapatr J; Polprasert C; Ahn KH
    Water Sci Technol; 2004; 49(5-6):381-8. PubMed ID: 15137448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel wastewater treatment process: simultaneous nitrification, denitrification and phosphorus removal.
    Zeng RJ; Lemaire R; Yuan Z; Keller J
    Water Sci Technol; 2004; 50(10):163-70. PubMed ID: 15656309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biological nitrogen removal using bio-sorbed internal organic carbon from piggery wastewater in a post-denitrification MLE process.
    Park SM; Jun HB; Chung YJ; Lee SH
    Water Sci Technol; 2004; 49(5-6):373-80. PubMed ID: 15137447
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intensified nitrogen and phosphorus removal in a novel electrolysis-integrated tidal flow constructed wetland system.
    Ju X; Wu S; Zhang Y; Dong R
    Water Res; 2014 Aug; 59():37-45. PubMed ID: 24784452
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of the effect of different electrodes and their connections on the removal efficiency of 4-nitrophenol from aqueous solution by electrocoagulation.
    Modirshahla N; Behnajady MA; Mohammadi-Aghdam S
    J Hazard Mater; 2008 Jun; 154(1-3):778-86. PubMed ID: 18162293
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nutrient removal from slaughterhouse wastewater in an intermittently aerated sequencing batch reactor.
    Li JP; Healy MG; Zhan XM; Rodgers M
    Bioresour Technol; 2008 Nov; 99(16):7644-50. PubMed ID: 18359223
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A small scale hydroponics wastewater treatment system under Swedish conditions.
    Norström A; Larsdotter K; Gumaelius L; la Cour Jansen J; Dalhammar G
    Water Sci Technol; 2003; 48(11-12):161-7. PubMed ID: 14753532
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of chemical dose in biological phosphorus and nitrogen removal in simultaneous chemical precipitation for phosphorus removal.
    Liu Y; Shi H; Li W; Hou Y; He M
    Bioresour Technol; 2011 Mar; 102(5):4008-12. PubMed ID: 21215613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrogen fixation in the activated sludge treatment of thermomechanical pulping wastewater: effect of dissolved oxygen.
    Slade AH; Anderson SM; Evans BG
    Water Sci Technol; 2003; 48(8):1-8. PubMed ID: 14682564
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biological phosphorus and nitrogen removal with biological aerated filter using denitrifying phosphorus accumulating organism.
    Lee J; Kim J; Lee C; Yun Z; Choi E
    Water Sci Technol; 2005; 52(10-11):569-78. PubMed ID: 16459835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of sequentially combining methanol and acetic acid on the performance of biological nitrogen and phosphorus removal.
    Cho E; Molof AH
    J Environ Manage; 2004 Nov; 73(3):183-7. PubMed ID: 15474735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphorus removal from synthetic and municipal wastewater using spent alum sludge.
    Georgantas DA; Grigoropoulou HP
    Water Sci Technol; 2005; 52(10-11):525-32. PubMed ID: 16459830
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combined UASB reactor and DAF/BF/anoxic/aerobic process for the removal of high-concentration organic matter and nutrients from slurry-type swine waste.
    Kim BU; Won CH; Rim JM
    Water Sci Technol; 2004; 49(5-6):199-205. PubMed ID: 15137424
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-strength nitrogen removal of opto-electronic industrial wastewater in membrane bioreactor--a pilot study.
    Chen TK; Ni CH; Chen JN; Lin J
    Water Sci Technol; 2003; 48(1):191-8. PubMed ID: 12926637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nutrient minimisation in the pulp and paper industry: an overview.
    Slade AH; Ellis RJ; vanden Heuvel M; Stuthridge TR
    Water Sci Technol; 2004; 50(3):111-22. PubMed ID: 15461405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The pretreatment by the Fe-Cu process for enhancing biological degradability of the mixed wastewater.
    Fan JH; Ma LM
    J Hazard Mater; 2009 May; 164(2-3):1392-7. PubMed ID: 19019539
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous removal of nitrogen and phosphorus with A2/O process using immobilized media.
    Goto M; Kuribayashi S; Nonaka Y; Yamazaki M
    Water Sci Technol; 2002; 46(11-12):113-9. PubMed ID: 12523741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Treatment of dairy wastewaters by electrocoagulation using mild steel electrodes.
    Sengil IA; Ozacar M
    J Hazard Mater; 2006 Sep; 137(2):1197-205. PubMed ID: 16846691
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.