These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 17615961)

  • 61. Aerobic treatment of wastewater: removal of nitrogen and phosphorus in the presence of humic substances.
    Kochany J; Lipczynska-Kochany E
    Environ Technol; 2009 Apr; 30(5):421-9. PubMed ID: 19507432
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Removal of organic carbon and nitrogen in a membraneless flow-through microbial electrolysis cell.
    Hussain A; Lebrun FM; Tartakovsky B
    Enzyme Microb Technol; 2017 Jul; 102():41-48. PubMed ID: 28465059
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nutrients removal and recovery in bioelectrochemical systems: a review.
    Kelly PT; He Z
    Bioresour Technol; 2014 Feb; 153():351-60. PubMed ID: 24388692
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell.
    Zhan G; Zhang L; Li D; Su W; Tao Y; Qian J
    Bioresour Technol; 2012 Jul; 116():271-7. PubMed ID: 22572551
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Electrochemical treatment in relation to pH of domestic wastewater using Ti/Pt electrodes.
    Vlyssides AG; Karlis PK; Rori N; Zorpas AA
    J Hazard Mater; 2002 Nov; 95(1-2):215-26. PubMed ID: 12409250
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Influences of operational parameters on phosphorus removal in batch and continuous electrocoagulation process performance.
    Nguyen DD; Yoon YS; Bui XT; Kim SS; Chang SW; Guo W; Ngo HH
    Environ Sci Pollut Res Int; 2017 Nov; 24(32):25441-25451. PubMed ID: 28936599
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Simultaneous removal of ammonia nitrogen and manganese from wastewater using nitrite by electrochemical method.
    Shu J; Liu R; Liu Z; Qiu J; Chen H; Tao C
    Environ Technol; 2017 Feb; 38(3):370-376. PubMed ID: 27249226
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Integrating entrapped mixed microbial cell (EMMC) process for biological removal of carbon and nitrogen from dilute swine wastewater.
    Yang PY; Chen HJ; Kim SJ
    Bioresour Technol; 2003 Feb; 86(3):245-52. PubMed ID: 12688467
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Preparation of Fe/C-MgCO
    Han Y; Su Z; Ma X; Fu X; Xu H; Liu L; Liu M
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):13372-13392. PubMed ID: 36131176
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Improvement of phosphorus removal by calcium addition in the iron electrocoagulation process.
    Mishima I; Hama M; Tabata Y; Nakajima J
    Water Sci Technol; 2017 Aug; 76(3-4):920-927. PubMed ID: 28799938
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Electrolytic removal of Rhodamine B from aqueous solution by peroxicoagulation process.
    Nidheesh PV; Gandhimathi R
    Environ Sci Pollut Res Int; 2014; 21(14):8585-94. PubMed ID: 24687786
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Influence of pH on hydrothermal treatment of swine manure: Impact on extraction of nitrogen and phosphorus in process water.
    Ekpo U; Ross AB; Camargo-Valero MA; Fletcher LA
    Bioresour Technol; 2016 Aug; 214():637-644. PubMed ID: 27187568
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Long-term investigation of phosphorus removal by iron electrocoagulation in small-scale wastewater treatment plants.
    Mishima I; Hama M; Tabata Y; Nakajima J
    Water Sci Technol; 2018 Nov; 78(5-6):1304-1311. PubMed ID: 30388087
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell.
    Villano M; Scardala S; Aulenta F; Majone M
    Bioresour Technol; 2013 Feb; 130():366-71. PubMed ID: 23313682
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Research on the treatment of phosphoric wastewater by ultrasound-assisted microelectrolysis method.
    Yang H; Xue JJ; Wang L; Wang ZW; Ling SS; Kong LG; Chen YL
    Environ Technol; 2012; 33(1-3):221-7. PubMed ID: 22519106
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effect of bipolar electrode material on the reclamation of urban wastewater by an integrated electrodisinfection/electrocoagulation process.
    Llanos J; Cotillas S; Cañizares P; Rodrigo MA
    Water Res; 2014 Apr; 53():329-38. PubMed ID: 24531029
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Electrocoagulation of wastewater using aluminum, iron, and magnesium electrodes.
    Devlin TR; Kowalski MS; Pagaduan E; Zhang X; Wei V; Oleszkiewicz JA
    J Hazard Mater; 2019 Apr; 368():862-868. PubMed ID: 30336967
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Solar-driven, self-sustainable electrolysis for treating eutrophic river water: Intensified nutrient removal and reshaped microbial communities.
    Liu H; Kong T; Qiu L; Xu R; Li F; Kolton M; Lin H; Zhang L; Lin L; Chen J; Sun X; Gao P; Sun W
    Sci Total Environ; 2021 Apr; 764():144293. PubMed ID: 33385655
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Field-scale electrolysis/ceramic membrane system for the treatment of sewage from decentralized small communities.
    Son DJ; Kim WY; Yun CY; Kim DG; Chang D; Sunwoo Y; Hong KH
    Environ Technol; 2018 Aug; 39(15):1976-1984. PubMed ID: 28639850
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Preliminary research on a new method of NO3- -N wastewater treatment based on electrochemistry].
    Ye SF; Hu XM; Zhang Y; Dong J
    Huan Jing Ke Xue; 2010 Aug; 31(8):1827-33. PubMed ID: 21090300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.